Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Cureus ; 16(5): e60648, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38903290

RESUMEN

Persistent trigeminal artery (PTA) is the most common remnant of the primitive carotid-vertebrobasilar anastomoses, which typically form and obliterate during the early stages of human embryonic development. While PTA can be non-pathologic and is usually an incidental finding, it is also associated with various other vascular abnormalities, such as arteriovenous malformations and fistulae, but most commonly cerebral aneurysms. In these cases, aneurysms are usually reported in the anterior cerebral circulation or in the PTA trunk itself; to date, only one report exists of an associated aneurysm in the posterior circulation (basilar artery). These associated vascular pathologies are not only a source of morbidity and mortality but can also complicate subsequent endovascular treatment due to different flow patterns and increased vessel tortuosity. In this case report, we present the first reported case of PTA-associated aneurysm in the anterior inferior cerebellar artery and its resulting impact on the endovascular treatment of this aneurysm.

2.
J Neurol Surg B Skull Base ; 85(3): 287-294, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38721365

RESUMEN

Background Arterial compression of the trigeminal nerve at the root entry zone has been the long-attributed cause of compressive trigeminal neuralgia despite numerous studies reporting distal and/or venous compression. The impact of compression type on patient outcomes has not been fully elucidated. Objective We categorized vascular compression (VC) based on vessel and location of compression to correlate pain outcomes based on compression type. Methods A retrospective video review of 217 patients undergoing endoscopic microvascular decompression for trigeminal neuralgia categorizing VC into five distinct types, proximal arterial compression (VC1), proximal venous compression (VC2), distal arterial compression (VC3), distal venous compression (VC4), and no VC (VC5). VC type was correlated with postoperative pain outcomes at 1 month ( n = 179) and last follow-up (mean = 42.9 mo, n = 134). Results At 1 month and longest follow-up, respectively, pain was rated as "much improved" or "very much improved" in 89 69% of patients with VC1, 86.6 and 62.5% of patients with VC2, 100 and 87.5% of patients with VC3, 83 and 62.5% of patients with VC4, and 100 and 100% of patients with VC5. Multivariate analysis demonstrated VC4 as a significant negative of predictor pain outcomes at 1 month, but not longest follow-up, and advanced age as a significant positive predictor. Conclusion The degree of clinical improvement in all types of VC was excellent, but at longest follow-up VC type was not a significant predictor out outcome. However distal venous compression was significantly associated with worse outcomes at 1 month.

3.
J Neurosurg ; : 1-13, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38364220

RESUMEN

OBJECTIVE: Recent studies have suggested that biologically effective dose (BED) is an important correlate of pain relief and sensory dysfunction after Gamma Knife radiosurgery (GKRS) for trigeminal neuralgia (TN). The goal of this study was to determine if BED is superior to prescription dose in predicting outcomes in TN patients undergoing GKRS as a first procedure. METHODS: This was a retrospective study of 871 patients with type 1 TN from 13 GKRS centers. Patient demographics, pain characteristics, treatment parameters, and outcomes were reviewed. BED was compared with prescription dose and other dosimetric factors for their predictive value. RESULTS: The median age of the patients was 68 years, and 60% were female. Nearly 70% of patients experienced pain in the V2 and/or V3 dermatomes, predominantly on the right side (60%). Most patients had modified BNI Pain Intensity Scale grade IV or V pain (89.2%) and were taking 1 or 2 pain medications (74.1%). The median prescription dose was 80 Gy (range 62.5-95 Gy). The proximal trigeminal nerve was targeted in 77.9% of cases, and the median follow-up was 21 months (range 6-156 months). Initial pain relief (modified BNI Pain Intensity Scale grades I-IIIa) was noted in 81.8% of evaluable patients at a median of 30 days. Of 709 patients who achieved initial pain relief, 42.3% experienced at least one pain recurrence after GKRS at a median of 44 months, with 49.0% of these patients undergoing a second procedure. New-onset facial numbness occurred in 25.3% of patients after a median of 8 months. Age ≥ 63 years was associated with a higher probability of both initial pain relief and maintaining pain relief. A distal target location was associated with a higher probability of initial and long-term pain relief, but also a higher incidence of sensory dysfunction. BED ≥ 2100 Gy2.47 was predictive of pain relief at 30 days and 1 year for the distal target, whereas physical dose ≥ 85 Gy was significant for the proximal target, but the restricted range of BED values in this subgroup could be a confounding factor. A maximum brainstem point dose ≥ 29.5 Gy was associated with a higher probability of bothersome facial numbness. CONCLUSIONS: BED and physical dose were both predictive of pain relief and could be used as treatment planning goals for distal and proximal targets, respectively, while considering maximum brainstem point dose < 29.5 Gy as a potential constraint for bothersome numbness.

4.
Neurosurgery ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38169310

RESUMEN

BACKGROUND AND OBJECTIVES: Smartphone activity data recorded through high-fidelity accelerometry can provide accurate postoperative assessments of patient mobility. The "big data" available through smartphones allows for advanced analyses, yielding insight into patient well-being. This study compared rate of change in functional activity data between lumbar fusion (LF) and lumbar decompression (LD) patients to determine preoperative and postoperative course differences. METHODS: Twenty-three LF and 18 LD patients were retrospectively included. Activity data (steps per day) recorded in Apple Health, encompassing over 70 000 perioperative data points, was classified into 6 temporal epochs representing distinct functional states, including acute preoperative decline, immediate postoperative recovery, and postoperative decline. The daily rate of change of each patient's step counts was calculated for each perioperative epoch. RESULTS: Patients undergoing LF demonstrated steeper preoperative declines than LD patients based on the first derivative of step count data (P = .045). In the surgical recovery phase, LF patients had slower recoveries (P = .041), and LF patients experienced steeper postoperative secondary declines than LD patients did (P = .010). The rate of change of steps per day demonstrated varying perioperative trajectories that were not explained by differences in age, comorbidities, or levels operated. CONCLUSION: Patients undergoing LF and LD have distinct perioperative activity profiles characterized by the rate of change in the patient daily steps. Daily steps and their rate of change is thus a valuable metric in phenotyping patients and understanding their postsurgical outcomes. Prospective studies are needed to expand upon these data and establish causal links between preoperative patient mobility, patient characteristics, and postoperative functional outcomes.

5.
J Neurosurg ; 140(1): 210-217, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37486888

RESUMEN

OBJECTIVE: Deep brain stimulation (DBS) is a rapidly growing surgical option for patients with drug-resistant epilepsy who are not candidates for resective/ablative surgery. Recent randomized controlled trials have demonstrated efficacy of DBS of the anterior nucleus of the thalamus (ANT), particularly in frontal or temporal epilepsy, whereas DBS of the centromedian (CM) nucleus appears to be most suitable in well-defined generalized epilepsy syndromes. At the authors' institution, DBS candidates who did not fit the populations represented in these trials were managed with DBS of multiple distinct targets, which included ANT, CM, and less-studied nuclei-i.e., mediodorsal nucleus, pulvinar, and subthalamic nucleus. The goal of this study was to present the authors' experience with these types of cases, and to motivate future investigations that can determine the long-term efficacy of multitarget DBS. METHODS: This single-center retrospective study of adult patients with drug-resistant epilepsy who underwent multitarget DBS was performed to demonstrate the feasibility and safety of this approach, and to present seizure outcomes. Patients in this cohort had epilepsy with features that were difficult to treat with DBS of the ANT or CM nucleus alone, including multifocal/multilobar, diffuse-onset, and/or posterior-onset seizures; or both generalized and focal seizures. RESULTS: Eight patients underwent DBS of 2-3 distinct thalamic/subthalamic nuclei. DBS was performed with 2 electrodes in each hemisphere. All leads in each patient were implanted with either frontal or parietal trajectories. There were no surgical complications. Among those with > 6 months of follow-up (n = 5; range 7-21 months), all patients were responders in terms of overall seizure frequency and/or convulsive seizure frequency (i.e., ≥ 50% reduction). Two patients had adverse stimulation effects, which resolved with further programming. CONCLUSIONS: Multitarget DBS is a procedurally feasible and safe treatment strategy to maximize outcomes in patients with complex epilepsy. The authors highlight their approach to inform future studies that are sufficiently powered to assess its efficacy.


Asunto(s)
Estimulación Encefálica Profunda , Epilepsia Refractaria , Epilepsia , Adulto , Humanos , Estudios Retrospectivos , Epilepsia/terapia , Epilepsia/etiología , Epilepsia Refractaria/terapia , Convulsiones/etiología , Electrodos Implantados/efectos adversos
6.
Curr Biol ; 33(24): 5275-5287.e5, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-37924807

RESUMEN

The human olfactory system has two discrete channels of sensory input, arising from olfactory epithelia housed in the left and right nostrils. Here, we asked whether the primary olfactory cortex (piriform cortex [PC]) encodes odor information arising from the two nostrils as integrated or distinct stimuli. We recorded intracranial electroencephalogram (iEEG) signals directly from PC while human subjects participated in an odor identification task where odors were delivered to the left, right, or both nostrils. We analyzed the time course of odor identity coding using machine-learning approaches and found that uni-nostril odor inputs to the ipsilateral nostril are encoded ∼480-ms faster than odor inputs to the contralateral nostril on average. During naturalistic bi-nostril odor sampling, odor information emerged in two temporally segregated epochs, with the first epoch corresponding to the ipsilateral and the second epoch corresponding to the contralateral odor representations. These findings reveal that PC maintains distinct representations of odor input from each nostril through temporal segregation, highlighting an olfactory coding scheme at the cortical level that can parse odor information across nostrils within the course of a single inhalation.


Asunto(s)
Corteza Olfatoria , Percepción Olfatoria , Corteza Piriforme , Humanos , Odorantes , Vías Olfatorias , Olfato
7.
Epilepsia ; 64(11): 3025-3035, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37607249

RESUMEN

OBJECTIVE: Thalamic deep brain stimulation (DBS) is an effective therapeutic option in patients with drug-resistant epilepsy. Recent DBS devices with sensing capabilities enable chronic, outpatient local field potential (LFP) recordings. Whereas beta oscillations have been demonstrated to be a useful biomarker in movement disorders, the clinical utility of DBS sensing in epilepsy remains unclear. Our aim was to determine LFP features that distinguish ictal from inter-ictal states, which may aid in tracking seizure outcomes with DBS. METHODS: Electrophysiology data were obtained from DBS devices implanted in the anterior nucleus (N = 12) or centromedian nucleus (N = 2) of the thalamus. Power spectra recorded during patient/caregiver-marked seizure events were analyzed with a method that quantitatively separates the oscillatory and non-oscillatory/aperiodic components of the LFP using non-parametric statistics, without the need for pre-specification of the frequency bands of interest. Features of the LFP parameterized using this algorithm were compared with those from inter-ictal power spectra recorded in clinic. RESULTS: Oscillatory activity in multiple canonical frequency bands was identified from the power spectra in 86.48% of patient-marked seizure events. Delta oscillations were present in all patients, followed by theta (N = 10) and beta (N = 9). Although there were no differences in oscillatory LFP features between the ictal and inter-ictal states, there was a steeper decline in the 1/f slope of the aperiodic component of the LFP during seizures. SIGNIFICANCE: Our work highlights the potential and shortcomings of chronic LFP recordings in thalamic DBS for epilepsy. Findings suggest that no single frequency band in isolation clearly differentiates seizures, and that features of aperiodic LFP activity may be clinically-relevant biomarkers of seizures.


Asunto(s)
Estimulación Encefálica Profunda , Epilepsia Refractaria , Epilepsia , Núcleos Talámicos Intralaminares , Humanos , Estimulación Encefálica Profunda/métodos , Epilepsia/terapia , Convulsiones/terapia , Epilepsia Refractaria/terapia
8.
J Neurosurg Spine ; 39(3): 427-437, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37243547

RESUMEN

OBJECTIVE: Patient-reported outcome measures (PROMs) are the gold standard for assessing postoperative outcomes in spine surgery. However, PROMs are also limited by the inherent subjectivity of self-reported qualitative data. Recent literature has highlighted the utility of patient mobility data streamed from smartphone accelerometers as an objective measure of functional outcomes and complement to traditional PROMs. Still, for activity-based data to supplement existing PROMs, they must be validated against current metrics. In this study, the authors assessed the relationships and concordance between longitudinal smartphone-based mobility data and PROMs. METHODS: Patients receiving laminectomy (n = 21) or fusion (n = 10) between 2017 and 2022 were retrospectively included. Activity data (steps-per-day count) recorded in the Apple Health mobile application over a 2-year perioperative window were extracted and subsequently normalized to allow for intersubject comparison. PROMS, including the visual analog scale (VAS), Patient Reported Outcome Measurement Information System Pain Interference (PROMIS-PI), Oswestry Disability Index (ODI), and EQ-5D, collected at the preoperative and 6-week postoperative visits were retrospectively extracted from the electronic medical record. Correlations between PROMs and patient mobility were assessed and compared between patients who did and those who did not achieve the established minimal clinically important difference (MCID) for each measure. RESULTS: A total of 31 patients receiving laminectomy (n = 21) or fusion (n = 10) were included. Change between preoperative and 6-week postoperative VAS and PROMIS-PI scores demonstrated moderate (r = -0.46) and strong (r = -0.74) inverse correlations, respectively, with changes in normalized steps-per-day count. In cohorts of patients who achieved PROMIS-PI MCID postoperatively, indicating subjective improvement in pain, there was a 0.784 standard deviation increase in normalized steps per day, representing a 56.5% improvement (p = 0.027). Patients who did achieve the MCID of improvement in either PROMIS-PI or VAS after surgery were more likely to experience an earlier sustained improvement in physical activity commensurate to or greater than their preoperative baseline (p = 2.98 × 10-18) than non-MCID patients. CONCLUSIONS: This study demonstrates a strong correlation between changes in mobility data extracted from patient smartphones and changes in PROMs following spine surgery. Further elucidating this relationship will allow for more robust supplementation of existing spine outcome measure tools with analyzed objective activity data.


Asunto(s)
Diferencia Mínima Clínicamente Importante , Teléfono Inteligente , Humanos , Estudios Retrospectivos , Limitación de la Movilidad , Medición de Resultados Informados por el Paciente , Encuestas y Cuestionarios , Dolor , Resultado del Tratamiento
9.
bioRxiv ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36824705

RESUMEN

The human olfactory system has two discrete channels of sensory input, arising from olfactory epithelia housed in the left and right nostrils. Here, we asked whether primary olfactory cortex (piriform cortex, PC) encodes odor information arising from the two nostrils as integrated or distinct stimuli. We recorded intracranial EEG signals directly from PC while human subjects participated in an odor identification task where odors were delivered to the left, right, or both nostrils. We analyzed the time-course of odor-identity coding using machine learning approaches, and found that uni-nostril odor inputs to the ipsilateral nostril are encoded ~480 ms faster than odor inputs to the contralateral nostril on average. During naturalistic bi-nostril odor sampling, odor information emerged in two temporally segregated epochs with the first epoch corresponding to the ipsilateral and the second epoch corresponding to the contralateral odor representations. These findings reveal that PC maintains distinct representations of odor input from each nostril through temporal segregation, highlighting an olfactory coding scheme at the cortical level that can parse odor information across nostrils within the course of a single inhalation.

10.
J Clin Neurosci ; 106: 213-216, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36371300

RESUMEN

BACKGROUND: Rigid fixation using a three-point skull clamp is a common practice during cranial surgery. Despite its frequency of use, rigid fixation is not without risk of complications including hemodynamic changes, skull fractures and venous thromboembolism. Given this, alternative head fixation should be considered when clinically appropriate. OBJECTIVE: We sought to demonstrate a safe and effective "pinless" head fixation system during endoscopic microvascular decompression (E-MVD). METHODS: Patients undergoing E-MVD were placed in the lateral position with a doughnut pillow under the head, providing support and reducing lateral neck flexion. The vertex of the cranium was angled 10 degrees downward and tape placed circumferentially in an X-shaped fashion around the head, avoiding direct pressure on the ears or eyes. The ipsilateral shoulder was pulled caudally away from the operative field and taped in place to ensure a maximal working corridor. RESULTS: Fifty-two patients underwent the E-MVD procedure with pinless head fixation without any clinical complications. Indications included trigeminal neuralgia type 1 (63.5%), trigeminal neuralgia type 2 (5.8%), hemifacial spasm (19.2%), geniculate neuralgia (7.7%) and glossopharyngeal neuralgia (3.8%). There were no intraoperative or post operative complications and operative time for patients with three-point skull clamp fixation were similar compared to pinless head fixation. CONCLUSIONS: Pinless head fixation is a suitable alternative for certain patients undergoing E-MVD and provides a way to minimize complications that can occur secondary to rigid fixation. If pinless fixation is used, diligent and continued communication with the anesthetist is necessary to ensure there is no intraoperative patient movement.


Asunto(s)
Enfermedades del Nervio Glosofaríngeo , Espasmo Hemifacial , Cirugía para Descompresión Microvascular , Neuralgia del Trigémino , Humanos , Cirugía para Descompresión Microvascular/métodos , Neuralgia del Trigémino/cirugía , Estudios Retrospectivos , Espasmo Hemifacial/etiología , Enfermedades del Nervio Glosofaríngeo/etiología , Resultado del Tratamiento
11.
J Radiosurg SBRT ; 8(2): 117-125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275137

RESUMEN

In Gamma Knife (GK) radiosurgery, dose rate decreases during the life cycle of its radiation source, extending treatment times. Prolonged treatments influence the amount of sublethal radiation injury that is repaired during exposure, and is associated with decreased biologically-equivalent dose (BED). We assessed the impact of treatment times on clinical outcomes following GK of the trigeminal nerve - a rare clinical model to isolate the effects of treatment times. This is a retrospective analysis of 192 patients with facial pain treated across three source exchanges. All patients were treated to 80 Gy with a single isocenter. Treatment time was analyzed in terms of patient anatomy-specific dose rate, as well as BED calculated from individual patient beam-on times. An outcome tool measuring pain in three distinct domains (pain intensity, interference with general and oro-facial activities of daily living), was administered before and after intervention. Multivariate linear regression was performed with dose rate/BED, brainstem dose, sex, age, diagnosis, and prior intervention as predictors. BED was an independent predictor of the degree of improvement in all three dimensions of pain severity. A decrease in dose rate by 1.5 Gy/min corresponded to 31.8% less improvement in the overall severity of pain. Post-radiosurgery incidence of facial numbness was increased for BEDs in the highest quartile. Treatment time is an independent predictor of pain outcomes, suggesting that prescription dose should be customized to ensure iso-effective treatments, while accounting for the possible increase in adverse effects at the highest BEDs.

12.
Front Neurosci ; 16: 837624, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784832

RESUMEN

Introduction: The lateral habenula (LHb) is an epithalamic nucleus associated with negative valence and affective disorders. It receives input via the stria medullaris (SM) and sends output via the fasciculus retroflexus (FR). Here, we use tractography to reconstruct and characterize this pathway. Methods: Multi-shell human diffusion magnetic resonance imaging (dMRI) data was obtained from the human connectome project (HCP) (n = 20, 10 males) and from healthy controls (n = 10, 6 males) scanned at our institution. We generated LHb afferents and efferents using probabilistic tractography by selecting the pallidum as the seed region and the ventral tegmental area as the output target. Results: We were able to reconstruct the intended streamlines in all individuals from the HCP dataset and our dataset. Our technique also aided in identification of the LHb. In right-handed individuals, the streamlines were significantly more numerous in the left hemisphere (mean ratio 1.59 ± 0.09, p = 0.04). In left-handed individuals, there was no hemispheric asymmetry on average (mean ratio 1.00 ± 0.09, p = 1.0). Additionally, these streamlines were significantly more numerous in females than in males (619.9 ± 159.7 vs. 225.9 ± 66.03, p = 0.04). Conclusion: We developed a method to reconstruct the SM and FR without manual identification of the LHb. This technique enables targeting of these fiber tracts as well as the LHb. Furthermore, we have demonstrated that there are sex and hemispheric differences in streamline number. These findings may have therapeutic implications and warrant further investigation.

14.
Neurosurg Focus ; 52(4): E4, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35364581

RESUMEN

OBJECTIVE: Treatment of degenerative lumbar spine pathologies typically escalates to surgical intervention when symptoms begin to significantly impair patients' functional status. Currently, surgeons rely on subjective patient assessments through patient-reported outcome measures to estimate the decline in patient wellness and quality of life. In this analysis, the authors sought to use smartphone-based accelerometry data to provide an objective, continuous measurement of physical activity that might aid in effective characterization of preoperative functional decline in different lumbar spine surgical indications. METHODS: Up to 1 year of preoperative activity data (steps taken per day) from 14 patients who underwent lumbar decompression and 15 patients who underwent endoscopic lumbar fusion were retrospectively extracted from patient smartphones. A data-driven algorithm was constructed based on 10,585 unique activity data points to identify and characterize the functional decline of patients preceding surgical intervention. Algorithmic estimation of functional decline onset was compared with reported symptom onset in clinical documentation across patients who presented acutely (≤ 5 months of symptoms) or chronically (> 5 months of symptoms). RESULTS: The newly created algorithm identified a statistically significant decrease in physical activity during measured periods of functional decline (p = 0.0020). To account for the distinct clinical presentation phenotypes of patients requiring lumbar decompression (71.4% acute and 28.6% chronic) and those requiring lumbar fusion (6.7% acute and 93.3% chronic), a variable threshold for detecting clinically significant reduced physical activity was implemented. The algorithm characterized functional decline (i.e., acute or chronic presentation) in patients who underwent lumbar decompression with 100% accuracy (sensitivity 100% and specificity 100%), while characterization of patients who underwent lumbar fusion was less effective (accuracy 26.7%, sensitivity 21.4%, and specificity 100%). Adopting a less-permissive detection threshold in patients who underwent lumbar fusion, which rendered the algorithm robust to minor fluctuations above or below the chronically decreased level of preoperative activity in most of those patients, increased functional decline classification accuracy of patients who underwent lumbar fusion to 66.7% (sensitivity 64.3% and specificity 100%). CONCLUSIONS: In this study, the authors found that smartphone-based accelerometer data successfully characterized functional decline in patients with degenerative lumbar spine pathologies. The accuracy and sensitivity of functional decline detection were much lower when using non-surgery-specific detection thresholds, indicating the effectiveness of smartphone-based mobility analysis in characterizing the unique physical activity fingerprints of different lumbar surgical indications. The results of this study highlight the potential of using activity data to detect symptom onset and functional decline in patients, enabling earlier diagnosis and improved prognostication.


Asunto(s)
Teléfono Inteligente , Fusión Vertebral , Acelerometría , Descompresión Quirúrgica/métodos , Humanos , Calidad de Vida , Estudios Retrospectivos , Fusión Vertebral/métodos
15.
Neurosurgery ; 90(5): 588-596, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35199652

RESUMEN

BACKGROUND: Spine surgery outcomes assessment currently relies on patient-reported outcome measures, which satisfy established reliability and validity criteria, but are limited by the inherently subjective and discrete nature of data collection. Physical activity measured from smartphones offers a new data source to assess postoperative functional outcomes in a more objective and continuous manner. OBJECTIVE: To present a methodology to characterize preoperative mobility and gauge the impact of surgical intervention using objective activity data garnered from smartphone-based accelerometers. METHODS: Smartphone mobility data from 14 patients who underwent elective lumbar decompressive surgery were obtained. A time series analysis was conducted on the number of steps per day across a 2-year perioperative period. Five distinct clinical stages were identified using a data-driven approach and were validated with clinical documentation. RESULTS: Preoperative presentation was correctly classified as either a chronic or acute mobility decline in 92% of patients, with a mean onset of acute decline of 11.8 ± 2.9 weeks before surgery. Postoperative recovery duration demonstrated wide variability, ranging from 5.6 to 29.4 weeks (mean: 20.6 ± 4.9 weeks). Seventy-nine percentage of patients ultimately achieved a full recovery, associated with an 80% ± 33% improvement in daily steps compared with each patient's preoperative baseline (P = .002). Two patients subsequently experienced a secondary decline in mobility, which was consistent with clinical history. CONCLUSION: The perioperative clinical course of patients undergoing spine surgery was systematically classified using smartphone-based mobility data. Our findings highlight the potential utility of such data in a novel quantitative and longitudinal surgical outcome measure.


Asunto(s)
Medición de Resultados Informados por el Paciente , Teléfono Inteligente , Ejercicio Físico , Humanos , Región Lumbosacra , Reproducibilidad de los Resultados
16.
Oper Neurosurg (Hagerstown) ; 22(4): 255-260, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35147587

RESUMEN

BACKGROUND: Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy is an incisionless therapy for the treatment of medication-resistant essential tremor. Although its safety and efficacy has been demonstrated, MRgFUS is typically performed with the patient awake, with intraprocedural neurological assessments to guide lesioning. OBJECTIVE: To report the first case of MRgFUS thalamotomy under general anesthesia in a patient whose medical comorbidities prohibit him from being in a supine position without a secured airway. METHODS: The dentatorubrothalamic tract was directly targeted. Two sonications reaching lesional temperatures (≥54°C) were delivered without any complications. RESULTS: Lesioning was confirmed on intraoperative magnetic resonance imaging, and the patient experienced 89% improvement in his tremor postoperatively. CONCLUSION: This demonstrates the safety and feasibility of MRgFUS thalamotomy under general anesthesia without the benefit of intraprocedural neurological assessments.


Asunto(s)
Temblor Esencial , Anestesia General , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/cirugía , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Masculino , Tálamo/diagnóstico por imagen , Tálamo/cirugía
17.
Neurosurgery ; 90(4): 419-425, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35044356

RESUMEN

BACKGROUND: The ventral intermediate (VIM) thalamic nucleus is the main target for the surgical treatment of refractory tremor. Initial targeting traditionally relies on atlas-based stereotactic targeting formulas, which only minimally account for individual anatomy. Alternative approaches have been proposed, including direct targeting of the dentato-rubro-thalamic tract (DRTT), which, in clinical settings, is generally reconstructed with deterministic tracking. Whether more advanced probabilistic techniques are feasible on clinical-grade magnetic resonance acquisitions and lead to enhanced reconstructions is poorly understood. OBJECTIVE: To compare DRTT reconstructed with deterministic vs probabilistic tracking. METHODS: This is a retrospective study of 19 patients with essential tremor who underwent deep brain stimulation (DBS) with intraoperative neurophysiology and stimulation testing. We assessed the proximity of the DRTT to the DBS lead and to the active contact chosen based on clinical response. RESULTS: In the commissural plane, the deterministic DRTT was anterior (P < 10-4) and lateral (P < 10-4) to the DBS lead. By contrast, although the probabilistic DRTT was also anterior to the lead (P < 10-4), there was no difference in the mediolateral dimension (P = .5). Moreover, the 3-dimensional Euclidean distance from the active contact to the probabilistic DRTT was smaller vs the distance to the deterministic DRTT (3.32 ± 1.70 mm vs 5.01 ± 2.12 mm; P < 10-4). CONCLUSION: DRTT reconstructed with probabilistic fiber tracking was superior in spatial proximity to the physiology-guided DBS lead and to the empirically chosen active contact. These data inform strategies for surgical targeting of the VIM.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Estimulación Encefálica Profunda/métodos , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/cirugía , Humanos , Estudios Retrospectivos , Tálamo/diagnóstico por imagen , Tálamo/fisiología , Tálamo/cirugía , Temblor
18.
Oper Neurosurg (Hagerstown) ; 22(2): 61-65, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007218

RESUMEN

BACKGROUND: Magnetic resonance imaging-guided focused ultrasound (MRgFUS) thalamotomy is a rapidly evolving therapy for the treatment of essential tremor. Although the skull is a major determinant of the delivery of acoustic energy to the target, how the presence of a prior craniotomy must be accounted for during lesioning is unclear. OBJECTIVE: To demonstrate novel application of this therapeutic option in a patient with a history of prior craniotomies for unrelated intracranial pathologies. METHODS: A 55-yr-old man with a history of right frontal craniotomy for resection of a colloid cyst underwent a left ventrointermedius nucleus thalamotomy through MRgFUS. The prior craniotomy flap was not excluded in the treatment plan; however, all bony defects and hardware were marked as "no-pass" regions. Clinical outcomes were collected at the 6-mo follow-up. RESULTS: Transducer elements whose acoustic paths would have been altered by the craniotomy defect were turned off. Sonications reaching lesional temperatures of up to 56°C were successfully delivered. The procedure was well-tolerated, without any persistent intra-ablation or postablation adverse effects. The presence of a lesion was confirmed on MRI, which was associated with a significant reduction in the patient's tremor that was sustained at the 6-mo follow-up. CONCLUSION: This case demonstrates the safety and efficacy of MRgFUS thalamotomy in a patient with prior craniotomies and highlights our strategy for acoustic lesioning in this setting.


Asunto(s)
Temblor Esencial , Craneotomía , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/cirugía , Estudios de Factibilidad , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Masculino
19.
Cureus ; 13(9): e18277, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34722055

RESUMEN

Multilevel lateral interbody fusion is an acceptable surgical technique in patients with severe degenerative adult spinal deformity (ASD). The current standard-of-care in spine surgery includes the use of patient reported outcome measures (PROMs) to assess post-operative improvement. Objective activity data during the peri-operative period may provide supplementary information for patients recovering from ASD surgery. In this report, we use smartphone-based activity data as an objective outcome measure for a patient who underwent a two-stage operation for ASD corrective surgery: lateral osteotomy and lumbar interbody fusion with posterior column release. An 82-year-old male presented with intractable back pain secondary to severe thoracolumbar scoliotic deformity (Lenke 5BN). Pre-operative images demonstrated the presence of bridging osteophytes over the left lateral aspect of L2-5 disc spaces and over the apex of the lumbar curvature, with significant neuroforaminal stenosis. Surgical correction was completed in two stages: (1) left-sided lateral osteotomy using anterior-to-psoas approach (ATP) in a right lateral decubitus position, and (2) multilevel Ponte osteotomies and instrumented fusion from T10-pelvis. Post-operative radiography showed correction to scoliotic deformity and sagittal misalignment. The patient had developed seroma and wound dehiscence, which was evacuated on post-operative day 11. At 14-month follow-up, the patient reported significant improvement in pain symptoms, corroborated by patient reported outcome measures. To further quantify and assess patient recovery, smartphone-based patient activity data was collected and analyzed to serve as a proxy for the patient's functional improvement. The patient's walking steps-per-day was compared pre- and post-operatively. The patient's pre-operative baseline was 223 steps/day; the patient's activity during immediate post-operative recovery dropped to 179 steps/day; the patient returned to baseline activity levels approximately 3 months after surgery, reaching an average of 216 steps/day. In conclusion, we found that lateral osteotomy through an ATP approach is a powerful tool to restore normal spine alignment and can be successfully performed using anatomic landmarks. Additionally, smartphone-based mobility data can assess pre-operative activity level and allow for remote patient monitoring beyond routine follow-up schedule.

20.
J Clin Psychiatry ; 82(6)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34670026

RESUMEN

Objective: Deep brain stimulation (DBS) is an emerging therapy for treatment-resistant depression (TRD) that has shown variable efficacy. This report describes long-term outcomes of DBS for TRD.Methods: A consecutive series of 8 patients with TRD were implanted with ventral capsule/ventral striatum (VC/VS) DBS systems as part of the Reclaim clinical trial. Outcomes from 2009 to 2020 were assessed using the Montgomery-Åsberg Depression Rating Scale (MADRS). Demographic information, MADRS scores, and data on adverse events were collected via retrospective chart review. MADRS scores were integrated over time using an area-under-the-curve technique.Results: This cohort of patients had severe TRD-all had failed trials of ECT, and all had failed a minimum of 4 adequate medication trials. Mean ± SD follow-up for patients who continued to receive stimulation was 11.0 ± 0.4 years (7.8 ± 4.3 years for the entire cohort). At last follow-up, mean improvement in MADRS scores was 44.9% ± 42.7%. Response (≥ 50% improvement) and remission (MADRS score ≤ 10) rates at last follow-up were 50% and 25%, respectively. Two patients discontinued stimulation due to lack of efficacy, and another patient committed suicide after stimulation was discontinued due to recurrent mania. The majority of the cohort (63%) continued to receive stimulation through the end of the study.Conclusions: While enthusiasm for DBS treatment of TRD has been tempered by recent randomized trials, this small open-label study demonstrates that some patients achieve meaningful and sustained clinical benefit. Further trials are required to determine the optimal stimulation parameters and patient populations for which DBS would be effective. Particular attention to factors including patient selection, integrative outcome measures, and long-term observation is essential for future trial design.Trial Registration: ClinicalTrials.gov identifier: NCT00837486.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Trastorno Depresivo Mayor/terapia , Trastorno Depresivo Resistente al Tratamiento , Calidad de Vida/psicología , Cognición , Trastorno Depresivo Resistente al Tratamiento/psicología , Trastorno Depresivo Resistente al Tratamiento/terapia , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Evaluación de Resultado en la Atención de Salud , Escalas de Valoración Psiquiátrica , Prevención Secundaria/métodos , Tiempo , Resultado del Tratamiento , Estriado Ventral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA