Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biofabrication ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121870

RESUMEN

Gallbladder carcinoma (GBC) is a malignant hepatobiliary cancer characterized by an intricate tumor microenvironments (TME) and heterogeneity. The traditional GBC 2D culture models cannot faithfully recapitulate the characteristics of the TME. Three-dimensional (3D) bioprinting enables the establishment of high-throughput and high-fidelity multicellular GBC models. In this study, we designed a concentric cylindrical tetra-culture model to reconstitute the spatial distribution of cells in tumor tissue, with the inner portion containing GBC cells, and the outer ring containing a mixture of endothelial cells, fibroblasts, and macrophages. We confirmed the survival, proliferation, biomarker expression and gene expression profiles of GBC 3D tetra-culture models. Hematoxylin-eosin (HE) and immunofluorescence staining verified the morphology and robust expression of GBC/endothelial/fibroblast/macrophage biomarkers in GBC 3D tetra-culture models. Single-cell RNA sequencing revealed two distinct subtypes of GBC cells within the model, glandular epithelial and squamous epithelial cells, suggesting the mimicry of intratumoral heterogeneity. Comparative transcriptome profile analysis among various in vitro models revealed that cellular interactions and the TME in 3D tetra-culture models reshaped the biological processes of tumor cells to a more aggressive phenotype. GBC 3D tetra-culture models restored the characteristics of the TME as well as intratumoral heterogeneity. Therefore, this model is expected to have future applications in tumor biology research and antitumor drug development.

2.
Langmuir ; 40(31): 16635-16641, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39041730

RESUMEN

Cactus spinelike materials have attracted much attention due to high fog harvesting efficiency, but great challenges in structure fabrication and structural controllability still remain. In this study, we proposed a magnetically driven spray-coating method to fabricate a cactus spinelike superhydrophobic Fe3O4 vertical array on nonwoven cotton fabric. This method is simple and controllable; a mixture containing magnetic Fe3O4 particles and organosilicon resin was atomized into tiny droplets and arranged along the magnetic field lines. Different from the traditional method to prepare a cactus spinelike structure via liquid flow under magnet, which is usually accompanied with a big structure size and an unobvious structure feature due to the high viscosity of magnetic liquid. However, if the magnetic liquid is transformed into tiny magnetic droplets by a spraying method, it is promising to prepare micrometer-scale conical structures, and the reduction degree of bionic structures is high. When the fabricated structure is used for fog harvesting, it shows an extremely high efficiency of approximately 6.33 g cm-2 h-1, which is superior to most state-of-the-art fog harvesting materials. Considering the advantages of simplicity, structure controllability, and high fog harvesting rate, the reported strategy provides an avenue to build up high-performance fog harvesting materials.

3.
Cell Rep ; 43(6): 114248, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795350

RESUMEN

Cyclic GMP-AMP synthase (cGAS) undergoes liquid-liquid phase separation (LLPS) to trigger downstream signaling upon double-stranded DNA (dsDNA) stimulation, and the condensed cGAS colocalizes with stress granules (SGs). However, the molecular mechanism underlying the modulation of cGAS activation by SGs remains elusive. In this study, we show that USP8 is localized to SGs upon dsDNA stimulation and potentiates cGAS-stimulator of interferon genes (STING) signaling. A USP8 inhibitor ameliorates pathological inflammation in Trex1-/- mice. Systemic lupus erythematosus (SLE) databases indicate a positive correlation between USP8 expression and SLE. Mechanistic study shows that the SG protein DDX3X promotes cGAS phase separation and activation in a manner dependent on its intrinsic LLPS. USP8 cleaves K27-linked ubiquitin chains from the intrinsically disordered region (IDR) of DDX3X to enhance its condensation. In conclusion, we demonstrate that USP8 catalyzes the deubiquitination of DDX3X to facilitate cGAS condensation and activation and that inhibiting USP8 is a promising strategy for alleviating cGAS-mediated autoimmune diseases.


Asunto(s)
ARN Helicasas DEAD-box , Interferón Tipo I , Nucleotidiltransferasas , Gránulos de Estrés , Ubiquitina Tiolesterasa , Ubiquitinación , Humanos , Animales , Nucleotidiltransferasas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ratones , ARN Helicasas DEAD-box/metabolismo , Interferón Tipo I/metabolismo , Gránulos de Estrés/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/patología , Transducción de Señal , Ratones Endogámicos C57BL , Células HEK293 , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Exodesoxirribonucleasas/metabolismo , Endopeptidasas , Fosfoproteínas , Complejos de Clasificación Endosomal Requeridos para el Transporte
4.
Biochem Genet ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600398

RESUMEN

Cholesterol efflux from foam cells in atherosclerotic plaques is crucial for reverse cholesterol transport (RCT), an important antiatherogenic event. ATP-binding cassette (ABC) transporters, ABCA1 and ABCG1, are key receptors in the cholesterol efflux pathway. C1q/tumor necrosis factor-related protein-9 (CTRP9) is a newly discovered adipokine and exhibits an atheroprotective activity. However, the role of CTRP9 in RCT still remains unknown. In this work, we investigated the effect of subcutaneous administration of CTRP9 protein on RCT and atherosclerotic lesion formation in ApoE-/- mice fed with a high-fat diet. CTRP9-dependent regulation of cholesterol efflux and ABC transporters in RAW 264.7 foam cells was determined. Our results showed that CTRP9 protein decreased atherosclerotic lesions, increased cholesterol efflux, and upregulated liver ABCA1 and ABCG1 expression in ApoE-/- mice. CTRP9 treatment dose-dependently increased mRNA and protein expression of ABCA1, ABCG1, and LXR-α in RAW 264.7 foam cells. Moreover, the expression and phosphorylation of AMPK was potentiated upon CTRP9 treatment. Notably, CTRP9-induced cholesterol efflux and upregulation of ABCA, ABCG1, and LXR-α were impaired when AMPK was knocked down. AMPK depletion restored cholesterol accumulation in CTRP9-treated RAW 264.7 cells. Taken together, subcutaneous injection is an effective novel delivery route for CTRP9 protein, and exogenous CTRP9 can facilitate cholesterol efflux and promote RCT in an animal model of atherosclerosis. The atheroprotective activity of CTRP9 is mediated through the activation of AMPK signaling.

5.
Macromol Rapid Commun ; 45(14): e2400102, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38648071

RESUMEN

The II-I phase transition of isotactic poly(1-butene) (iPBu) leads to improved mechanical performance. However, this will take several weeks and increase storage and processing costs. In this work, shear forces are introduced into the supercooled iPBu melt, and the effects of isothermal crystallization temperature (Tc) and shear temperature (Tshear) on crystallization and phase transition are explored. Shear-induced transcrystalline morphology of Form II with a significantly shortened crystallization induction period can be observed at relatively high Tc (105 °C). Besides, the shear-induced Form II can transit to Form I faster than the unsheared one. In addition, the phase transition rate increases as the Tshear decreases, with the fastest rate occurring at Tshear of 120 °C. The half transition time (t1/2) is measured as 6.3 h when Tc = 105 °C, Tshear = 120 °C, which is much shorter than the 20.7 h required for unsheared samples. The accelerated phase transition of iPBu can be attributed to the stretching of molecular chains, resulting from shear treatment. This study provides a quantitative analysis of the influence of the shear treatment and the Tshear on the II-I phase transition rate. It also presents a cost-effective and straightforward approach for expediting the phase transition process.


Asunto(s)
Transición de Fase , Polienos/química , Cristalización , Temperatura , Polímeros/química , Resistencia al Corte
6.
Discov Oncol ; 15(1): 85, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517553

RESUMEN

Predictive markers and prognostic models are useful for the individualization of cancer treatment. In this study, we sought to identify clinical and molecular factors to predict overall survival in recurrent glioma patients receiving bevacizumab-containing regimens. A cohort of 102 patients was retrospectively collected from June 2011 to January 2022 at our institution. A nomogram was generated by Cox regression and feature selection algorithms based on 19 clinicopathological and 60 molecular variables. The model's performance was internally evaluated by bootstrapping in terms of discrimination and calibration. The median overall survival from the initiation of bevacizumab administration to death or last follow-up was 11.6 months (95% CI: 9.2-13.8 months) for all 102 patients, 10.2 months (95% CI: 6.4-13.3 months) for 66 patients with grade 4 tumors, and 13.8 months (lower limit of 95% CI: 11.5 months) for 36 patients with tumors of grade lower or not available. In the final model, a lower WHO 2021 grade (Grade lower or not available vs. Grade 4, HR: 0.398, 95% CI: 0.223-0.708, p = 0.00172), having received adjuvant radiochemotherapy (Yes vs. No, HR: 0.488, 95% CI: 0.268-0.888, p = 0.0189), and wildtype EGFR (Wildtype vs. Altered, HR: 0.193, 95% CI: 0.0506-0.733, p = 0.0157; Not available vs. Altered, HR: 0.386, 95% CI: 0.184-0.810, p = 0.0118) were significantly associated with longer overall survival in multivariate Cox regression. The overall concordance index was 0.652 (95% CI: 0.566-0.714), and the areas under the time-dependent curves for 6-, 12-, and 18-month overall survival were 0.677 (95% CI: 0.516-0.816), 0.654 (95% CI: 0.470-0.823), and 0.675 (95% CI: 0.491-0.860), respectively. A prognostic model for overall survival in recurrent glioma patients treated with bevacizumab-based therapy was established and internally validated. It could serve as a reference tool for clinicians to assess the extent the patients may benefit from bevacizumab and stratify their treatment response.

7.
Mater Horiz ; 11(7): 1779-1786, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38314856

RESUMEN

The engineering of multifunctional structures with special surface wettability is highly desirable for all-weather freshwater production, but relevant research is scarce. In this study, a Janus conical vertical array was designed and fabricated via a magnetically driven spray-coating method for the first time. Benefiting from the special structure and wettability enhancement of the array in terms of solar absorption, fog capture and merging, droplet movement and evaporation area, all-weather freshwater production consisting of high-quality daytime solar vapor generation (water evaporation rate approximately 2.43 kg m-2 h-1, 1 kW m-2) and nighttime fog collection (water collection rate approximately 3.536 g cm-2 h-1) can be realized concurrently. When the designed array is employed for outdoor environments (114°35'E, 30°38'N, average daily temperature 34.9 °C, average daily humidity 64.0%), reliable and efficient daily pure water yields of 19.13 kg m-2-26.09 kg m-2 are obtainable. We believe that the proposed strategy for fabricating a Janus conical vertical array is novel in the integration of solar vapor generation and fog collection, which has great significance for all-weather freshwater production.

8.
ACS Appl Mater Interfaces ; 16(2): 2751-2762, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38178809

RESUMEN

Anion exchange membranes (AEMs) are increasingly becoming a popular research area due to their ability to function with nonprecious metals in electrochemical devices. Nevertheless, there is a challenge to simultaneously optimize the dimensional stability and ionic conductivity of AEMs due to the "trade-off" effect. Herein, we adopted a novel strategy of combining filling and cross-linking using functionalized bacterial cellulose (PBC) as a dual-functional porous support and brominated poly(phenylene oxide) (Br-PPO) as the cross-linking agent and filler. The PBC nanofiber framework together with cross-linking can provide a reliable mechanical support for the subsequent filled polymer, thus improving the mechanical properties and effectively limiting the size change of the final quaternized-PPO (QPPO)-filled PBC composite membrane. The composite membrane showed a very low swelling ratio of only 10.35%, even at a high water uptake (81.83% at 20 °C). Moreover, the existence of multiple -NR3+ groups in the cross-link bonds between BC and Br-PPO can provide extra OH- ion transport sites, contributing to the increase in ionic conductivity. The final membrane demonstrated a hydroxide ion conductivity of 62.58 mS cm-1, which was remarkably higher than that of the pure QPPO membrane by up to 235.93% (80 °C). The successful preparation of the PBC3/QPPO membrane provides an effective avenue to tackle the trade-off effect through a dual-functional strategy.

9.
J Colloid Interface Sci ; 656: 466-473, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38007938

RESUMEN

Sorption-based atmospheric water harvesting (SAWH) has been proven to be a promising method to alleviate the impact of the water crisis on human activities. However, the low water-sorption capacity and sluggish ab/desorption kinetics of current SAWH materials make it difficult to achieve high daily water production. In this study, a photothermal porous sodium alginate-tannic acid-5/Fe3+@lithium chloride aerogel (SA-TA-5/Fe3+@LiCl) with macroporous structure (average pore diameter ∼43.67 µm) and high solar absorbance (∼98.4 %) was fabricated via Fe3+-induced crosslinking and blackening methods. When it is employed for SAWH, moisture can enter the inner space of the aerogel and contact highly hygroscopic lithium chloride (LiCl) more easily via macroporous channels, resulting in the water uptake for the SA-TA-5/Fe3+@LiCl aerogel reaching approximately 1.229 g g-1 under dry conditions (relative humidity (RH) âˆ¼ 45 %, 25 °C) after a short time (4 h) moisture absorption, and releasing as much as 97.7 % of the absorbed water under 1 sun irradiation within 2 h. As a proof of concept, it is estimated that the daily water yield of the fabricated SA-TA/Fe3+@LiCl aerogel can reach approximately 4.65 kg kg-1 in conditions close to the real outdoor environment (RH âˆ¼ 45 %, 25 °C), which satisfies the daily minimum water consumption of two adults. This study demonstrates a novel strategy for developing advanced solar-driven SAWH materials with enhanced ab/desorption kinetics and efficient water sorption-desorption properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA