RESUMEN
Ovarian cancer, ranking as the seventh most prevalent malignancy among women globally, faces significant challenges in diagnosis and therapeutic intervention. The difficulties in early detection are amplified by the limitations and inefficacies inherent in current screening methodologies, highlighting a pressing need for more efficacious diagnostic and treatment strategies. Phage display technology emerges as a pivotal innovation in this context, utilizing extensive phage-peptide libraries to identify ligands with specificity for cancer cell markers, thus enabling precision-targeted therapeutic strategies. This technology promises a paradigm shift in ovarian cancer management, concentrating on targeted drug delivery systems to improve treatment accuracy and efficacy while minimizing adverse effects. Through a meticulous review, this paper evaluates the revolutionary potential of phage display in enhancing ovarian cancer therapy, representing a significant advancement in combating this challenging disease. Phage display technology is heralded as an essential instrument for developing effective immunodiagnostic and therapeutic approaches in ovarian cancer, facilitating early detection, precision-targeted medication, and the implementation of customized treatment plans.
Asunto(s)
Técnicas de Visualización de Superficie Celular , Neoplasias Ováricas , Biblioteca de Péptidos , Femenino , Humanos , Neoplasias Ováricas/terapia , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/inmunología , Biomarcadores de Tumor , Animales , Inmunoterapia/métodosRESUMEN
In the advancement of Inflammatory Bowel Disease (IBD) treatment, existing therapeutic methods exhibit limitations; they do not offer a complete cure for IBD and can trigger adverse side effects. Consequently, the exploration of novel therapies and multifaceted treatment strategies provides patients with a broader range of options. Within the framework of IBD, gut microbiota plays a pivotal role in disease onset through diverse mechanisms. Bacteriophages, as natural microbial regulators, demonstrate remarkable specificity by accurately identifying and eliminating specific pathogens, thus holding therapeutic promise. Although clinical trials have affirmed the safety of phage therapy, its efficacy is prone to external influences during storage and transport, which may affect its infectivity and regulatory roles within the microbiota. Improving the stability and precise dosage control of bacteriophages-ensuring robustness in storage and transport, consistent dosing, and targeted delivery to infection sites-is crucial. This review thoroughly explores the latest developments in IBD treatment and its inherent challenges, focusing on the interaction between the microbiota and bacteriophages. It highlights bacteriophages' potential as microbiome modulators in IBD treatment, offering detailed insights into research on bacteriophage encapsulation and targeted delivery mechanisms. Particular attention is paid to the functionality of various carrier systems, especially regarding their protective properties and ability for colon-specific delivery. This review aims to provide a theoretical foundation for using bacteriophages as microbiome modulators in IBD treatment, paving the way for enhanced regulation of the intestinal microbiota.
Asunto(s)
Bacteriófagos , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Terapia de Fagos , Humanos , Terapia de Fagos/métodos , Enfermedades Inflamatorias del Intestino/terapia , Bacteriófagos/fisiología , AnimalesRESUMEN
BACKGROUND: Tumors of the gastrointestinal tract impose a substantial healthcare burden due to their prevalence and challenging prognosis. METHODS: We conducted a review of peer-reviewed scientific literature using reputable databases (PubMed, Scopus, Web of Science) with a focus on oncolytic virus therapy within the context of gastrointestinal tumors. Our search covered the period up to the study's completion in June 2023. INCLUSION AND EXCLUSION CRITERIA: This study includes articles from peer-reviewed scientific journals, written in English, that specifically address oncolytic virus therapy for gastrointestinal tumors, encompassing genetic engineering advances, combined therapeutic strategies, and safety and efficacy concerns. Excluded are articles not meeting these criteria or focusing on non-primary gastrointestinal metastatic tumors. RESULTS: Our review revealed the remarkable specificity of oncolytic viruses in targeting tumor cells and their potential to enhance anti-tumor immune responses. However, challenges related to safety and efficacy persist, underscoring the need for ongoing research and improvement. CONCLUSION: This study highlights the promising role of oncolytic virus therapy in enhancing gastrointestinal tumor treatments. Continued investigation and innovative combination therapies hold the key to reducing the burden of these tumors on patients and healthcare systems.
Asunto(s)
Neoplasias Gastrointestinales , Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Viroterapia Oncolítica/efectos adversos , Virus Oncolíticos/genética , Neoplasias/patología , Neoplasias Gastrointestinales/terapia , Ingeniería Genética , InmunoterapiaRESUMEN
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Asunto(s)
Bacteriófagos , Cólera , Vibrio cholerae , Humanos , Toxina del Cólera , Cólera/microbiología , AguaRESUMEN
Pancreatic cancer is a devastating disease with a high mortality rate and a lack of effective therapies. The challenges associated with early detection and the highly aggressive nature of pancreatic cancer have limited treatment options, underscoring the urgent need for better disease-modifying therapies. Peptide-based biotherapeutics have become an attractive area of research due to their favorable properties such as high selectivity and affinity, chemical modifiability, good tissue permeability, and easy metabolism and excretion. Phage display, a powerful technique for identifying peptides with high affinity and specificity for their target molecules, has emerged as a key tool in the discovery of peptide-based drugs. Phage display technology involves the use of bacteriophages to express peptide libraries, which are then screened against a target of interest to identify peptides with desired properties. This approach has shown great promise in cancer diagnosis and treatment, with potential applications in targeting cancer cells and developing new therapies. In this comprehensive review, we provide an overview of the basic biology of phage vectors, the principles of phage library construction, and various methods for binding affinity assessment. We then describe the applications of phage display in pancreatic cancer therapy, targeted drug delivery, and early detection. Despite its promising potential, there are still challenges to be addressed, such as optimizing the selection process and improving the pharmacokinetic properties of phage-based drugs. Nevertheless, phage display represents a promising approach for the development of novel targeted therapies in pancreatic cancer and other tumors.
RESUMEN
Stroke poses a critical global health challenge, leading to substantial morbidity and mortality. Existing treatments often miss vital timeframes and encounter limitations due to adverse effects, prompting the pursuit of innovative approaches to restore compromised brain function. This review explores the potential of filamentous phages in enhancing stroke recovery. Initially antimicrobial-centric, bacteriophage therapy has evolved into a regenerative solution. We explore the diverse role of filamentous phages in post-stroke neurological restoration, emphasizing their ability to integrate peptides into phage coat proteins, thereby facilitating recovery. Experimental evidence supports their efficacy in alleviating post-stroke complications, immune modulation, and tissue regeneration. However, rigorous clinical validation is essential to address challenges like dosing and administration routes. Additionally, genetic modification enhances their potential as injectable biomaterials for complex brain tissue issues. This review emphasizes innovative strategies and the capacity of filamentous phages to contribute to enhanced stroke recovery, as opposed to serving as standalone treatment, particularly in addressing stroke-induced brain tissue damage.
Asunto(s)
Bacteriófagos , Inovirus , Inovirus/genéticaRESUMEN
Glioma progression is accompanied with increased tumor tissue stiffness, yet the underlying mechanisms are unclear. Herein, we employed atomic force microscopy analysis to show that tissue stiffness was higher in isocitrate dehydrogenase (IDH)-wild type gliomas than IDH-mutant gliomas. Bioinformatic analyses revealed that tissue inhibitor of metalloproteinase-1 (TIMP1) was one of the preferentially upregulated genes in IDH-wild type gliomas as compared to IDH-mutant gliomas, and its higher expression indicated worse prognosis of glioma patients. TIMP1 intensity determined by immunofluorescence staining on glioma tissues positively correlated with glioma tissue stiffness. Mechanistically, TIMP1 expression was positively correlated with the gene expression of two predominant extracellular matrix components, tenascin C and fibronectin, both of which were also highly expressed in IDH-wild type gliomas. By introducing IDH1-R132H-containing vectors into human IDH1-wild type glioma cells to obtain an IDH1-mutant cell line, we found that IDH1 mutation increased the TIMP1 promoter methylation through methylation-specific PCR. More importantly, IDH1-R132H mutation decreased both the expression of TIMP1, fibronectin, tenascin C, and the tumor tissue stiffness in IDH1-mutant glioma xenografts in contrast to IDH1-wild type counterparts. Moreover, TIMP1 knockdown in IDH-wild type glioma cells inhibited the expression of tenascin C and fibronectin, and decreased tissue stiffness in intracranial glioma xenografts. Conclusively, we revealed an IDH mutation status-mediated mechanism in regulating glioma tissue stiffness through modulating TIMP1 and downstream extracellular matrix components.
Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Fibronectinas/genética , Neoplasias Encefálicas/metabolismo , Tenascina/genética , Inhibidor Tisular de Metaloproteinasa-1/genética , Glioma/metabolismo , Mutación , Matriz Extracelular/metabolismoRESUMEN
Tumour-associated macrophages (TAMs) abundantly infiltrate high-grade gliomas and orchestrate immune response, but their diversity in isocitrate dehydrogenase (IDH)-differential grade 4 gliomas remains largely unknown. This study aimed to dissect the transcriptional states, spatial distribution, and clinicopathological significance of distinct monocyte-derived TAM (Mo-TAM) and microglia-derived TAM (Mg-TAM) clusters across glioblastoma-IDH-wild type and astrocytoma-IDH-mutant-grade 4 (Astro-IDH-mut-G4). Single-cell RNA sequencing was performed on four cases of human glioblastoma and three cases of Astro-IDH-mut-G4. Cell clustering, single-cell regulatory network inference, and gene set enrichment analysis were performed to characterize the functional states of myeloid clusters. The spatial distribution of TAM subsets was determined in human glioma tissues using multiplex immunostaining. The prognostic value of different TAM-cluster specific gene sets was evaluated in the TCGA glioma cohort. Profiling and unbiased clustering of 24,227 myeloid cells from glioblastoma and Astro-IDH-mut-G4 identified nine myeloid cell clusters including monocytes, six Mo/Mg-TAM subsets, dendritic cells, and proliferative myeloid clusters. Different Mo/Mg-TAM clusters manifest functional and transcriptional diversity controlled by specific regulons. Multiplex immunostaining of subset-specific markers identified spatial enrichment of distinct TAM clusters at peri-vascular/necrotic areas in tumour parenchyma or at the tumour-brain interface. Glioblastoma harboured a substantially higher number of monocytes and Mo-TAM-inflammatory clusters, whereas Astro-IDH-mut-G4 had a higher proportion of TAM subsets mediating antigen presentation. Glioblastomas with a higher proportion of monocytes exhibited a mesenchymal signature, increased angiogenesis, and worse patient outcome. Our findings provide insight into myeloid cell diversity and its clinical relevance in IDH-differential grade 4 gliomas, and may serve as a resource for immunotherapy development. © 2022 The Pathological Society of Great Britain and Ireland.
Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Astrocitoma/genética , Astrocitoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Glioma/genética , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , Macrófagos Asociados a TumoresRESUMEN
Glioblastoma is a lethal primary brain tumor with abundant immune-suppressive glioblastoma-associated macrophage (GAM) infiltration. Skewing immune suppressive GAMs towards an immune-activating phenotype represents a promising immunotherapeutic strategy against glioblastoma. Herein, we reported that genetic deletion of miRNA-processing enzyme Dicer in macrophages inhibited the growth of GL261 murine glioblastoma xenografts and prolonged survival of tumor-bearing mice. Single cell RNA sequencing (scRNA-seq) of the tumor-infiltrating immune cells revealed that Dicer deletion in macrophages reduced the proportion of cell-cycling GAM cluster and reprogramed the remaining GAMs towards a proinflammatory activation state (enhanced phagocytotic and IFN-producing signature). Dicer-deficient GAMs showed reduced level of cyclin-dependent kinases (CDK1 and CDK2) and increased expression of CDK inhibitor p27 Kip1, thus manifesting impaired proliferation. Dicer knockout enhanced phagocytotic activity of GAMs to eliminate GL261 tumor cells. Increased proinflammatory GAM clusters in macrophage Dicer-deficient mice actively interacted with tumor-infiltrating T cells and NK cells through TNF paracrine signaling to create a pro-inflammatory immune microenvironment for tumor cell elimination. Our work identifies the role of Dicer deletion in macrophages in generating an immune-activating microenvironment, which could be further developed as a potential immunotherapeutic strategy against glioblastoma.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Neoplasias Encefálicas/patología , Proliferación Celular/genética , Glioblastoma/metabolismo , Humanos , Células Asesinas Naturales/metabolismo , Macrófagos/metabolismo , Ratones , Linfocitos T/metabolismo , Microambiente Tumoral/genéticaRESUMEN
Two-dimensional (2D) organic-inorganic hybrid Ruddlesden-Popper perovskites (OIRPPs), which consist of naturally formed "multiple quantum well (MQW)-like" structure, have received considerable interest in optoelectronic applications, owing to their outstanding optical properties and tailorable functionalities. While the quantum-confined electrons and holes at an MQW structure are under an applied electric field, the tilt of the energy bands may cause a significant influence on their optical properties. This work demonstrates the presence of internal built-in electric fields (BIEFs) at the as-synthesized 2D OIRPP single crystals. Spontaneous Franz-Keldysh oscillations, which usually act as the fingerprint to account for the presence of BIEFs in the MQW-like structures, are observed at 2D OIRPPs by the highly sensitive differential technique of modulated thermoreflectance spectroscopy. The strength of BIEFs at 2D OIRPP single crystals reduces with increased n values due to the increased width of the quantum well. The origin of the presence of BIEFs at 2D OIRPPs is further unveiled by atomically resolved scanning tunneling microscopy on their electronic band structures at organic-inorganic interfaces. Unlike the conventional III-V MQW semiconductors with the BIEFs, which are dominated by the spatial concentration gradients at heterointerfaces, the presence of BIEFs at the 2D OIRPP single crystals is attributed to the molecular dipoles within organic spacers pointing to the organic-inorganic interfaces. The discovery of internal BIEFs at the 2D OIRPPs may provide deep insight into understanding the fundamental optical properties for the future design of large-area and low-cost perovskite optoelectronic devices.
RESUMEN
BACKGROUND: Glioblastoma (GB) is the most common and highly malignant brain tumor characterized by aggressive growth and resistance to alkylating chemotherapy. Autophagy induction is one of the hallmark effects of anti-GB therapies with temozolomide (TMZ). However, the non-classical form of autophagy, autophagy-based unconventional secretion, also called secretory autophagy and its role in regulating the sensitivity of GB to TMZ remains unclear. There is an urgent need to illuminate the mechanism and to develop novel therapeutic targets for GB. METHODS: Cancer genome databases and paired-GB patient samples with or without TMZ treatment were used to assess the relationship between HMGB1 mRNA levels and overall patient survival. The relationship between HMGB1 protein level and TMZ sensitivity was measured by immunohistochemistry, ELISA, Western blot and qRT-PCR. GB cells were engineered to express a chimeric autophagic flux reporter protein consisting of mCherry, GFP and LC3B. The role of secretory autophagy in tumor microenvironment (TME) was analyzed by intracranial implantation of GL261 cells. Coimmunoprecipitation (Co-IP) and Western blotting were performed to test the RAGE-NFκB-NLRP3 inflammasome pathway. RESULTS: The exocytosis of HMGB1 induced by TMZ in GB is dependent on the secretory autophagy. HMGB1 contributed to M1-like polarization of tumor associated macrophages (TAMs) and enhanced the sensitivity of GB cells to TMZ. Mechanistically, RAGE acted as a receptor for HMGB1 in TAMs and through RAGE-NFκB-NLRP3 inflammasome pathway, HMGB1 enhanced M1-like polarization of TAMs. Clinically, the elevated level of HMGB1 in sera may serve as a beneficial therapeutic-predictor for GB patients under TMZ treatment. CONCLUSIONS: We demonstrated that enhanced secretory autophagy in GB facilitates M1-like polarization of TAMs to enhance TMZ sensitivity of GB cells. HMGB1 acts as a key regulator in the crosstalk between GB cells and tumor-suppressive M1-like TAMs in GB microenvironment and may be considered as an adjuvant for the chemotherapeutic agent TMZ.
Asunto(s)
Antineoplásicos Alquilantes/uso terapéutico , Glioblastoma/tratamiento farmacológico , Macrófagos/metabolismo , Temozolomida/uso terapéutico , Animales , Antineoplásicos Alquilantes/farmacología , Apoptosis , Autofagia , Línea Celular Tumoral , Glioblastoma/patología , Humanos , Masculino , Ratones , Temozolomida/farmacología , Microambiente TumoralRESUMEN
Although the tumorigenic potential of glioma stem cells (GSCs) is associated with multiple molecular alterations, the gene amplification status of GSCs has not been elucidated. Overexpression of HomeoboxA5 (HOXA5) is associated with increased glioma malignancy. In this study, we identify the gene amplification and protein overexpression of HOXA5 in GSCs and its function in regulating GSC maintenance and the downstream transcriptional effector, to explore the significance of HOXA5 amplification/overexpression for GSC identification and prognostic determination. The HOXA5 gene is significantly amplified in glioblastoma (GBM) and is an independent prognostic factor for predicting worse patient outcomes. Specifically, HOXA5 gene amplification and the resultant protein overexpression are correlated with increased proportions of GSCs and enhanced self-renewal/invasiveness of these cells. Disruption of HOXA5 expression impairs GSC survival and GBM tumor propagation. Mechanistically, HOXA5 directly binds to the promoter region of protein tyrosine phosphatase receptor type Z1 (PTPRZ1), thereby upregulating this gene for GSC maintenance. Suppression of PTPRZ1 largely compromises the pro-tumoral effect of HOXA5 on GSCs. In summary, HOXA5 amplification serves as a genetic biomarker for predicting worse GBM outcome, by enhancing PTPRZ1-mediated GSC survival.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/patología , Carcinogénesis/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Glioblastoma/patología , Glioma/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Neoplásicas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismoRESUMEN
The impact of germline variants on the regulation of the expression of tumor microenvironment (TME)-based immune response genes remains unclear. Expression quantitative trait loci (eQTL) provide insight into the effect of downstream target genes (eGenes) regulated by germline-associated variants (eVariants). Through eQTL analyses, we illustrated the relationships between germline eVariants, TME-based immune response eGenes, and clinical outcomes. In this study, both RNA sequencing data from primary tumor and germline whole-genome sequencing data were collected from patients with stage III colorectal cancer (CRC). Ninety-nine high-risk subjects were subjected to immune response gene expression analyses. Seventy-seven subjects remained for further analysis after quality control, of which twenty-two patients (28.5%) experienced tumor recurrence. We found that 65 eQTL, including 60 germline eVariants and 22 TME-based eGenes, impacted the survival of cancer patients. For the recurrence prediction model, 41 differentially expressed genes (DEGs) achieved the best area under the receiver operating characteristic curve of 0.93. In total, 19 survival-associated eGenes were identified among the DEGs. Most of these genes were related to the regulation of lymphocytes and cytokines. A high expression of HGF, CCR5, IL18, FCER1G, TDO2, IFITM2, and LAPTM5 was significantly associated with a poor prognosis. In addition, the FCER1G eGene was associated with tumor invasion, tumor nodal stage, and tumor site. The eVariants that regulate the TME-based expression of FCER1G, including rs2118867 and rs12124509, were determined to influence survival and chromatin binding preferences. We also demonstrated that FCER1G and co-expressed genes in TME were related to the aggregation of leukocytes via pathway analysis. By analyzing the eQTL from the cancer genome using germline variants and TME-based RNA sequencing, we identified the eQTL in immune response genes that impact colorectal cancer characteristics and survival.
RESUMEN
Glioma stem cells (GSCs) are self-renewing tumor cells with multi-lineage differentiation potential and the capacity of construct glioblastoma (GBM) heterogenicity. Mitochondrial morphology is associated with the metabolic plasticity of GBM cells. Previous studies have revealed distinct mitochondrial morphologies and metabolic phenotypes between GSCs and non-stem tumor cells (NSTCs), whereas the molecules regulating mitochondrial dynamics in GBM cells are largely unknown. Herein, we report that carnitine palmitoyltransferase 1A (CPT1A) is preferentially expressed in NSTCs, and governs mitochondrial dynamics and GSC differentiation. Expressions of CPT1A and GSC marker CD133 were mutually exclusive in human GBMs. Overexpression of CPT1A inhibited GSC self-renewal but promoted mitochondrial fusion. In contrast, disruption of CPT1A in NSTCs promoted mitochondrial fission and reprogrammed NSTCs toward GSC feature. Mechanistically, CPT1A overexpression increased the phosphorylation of dynamin-related protein 1 at Ser-637 to promote mitochondrial fusion. In vivo, CPT1A overexpression decreased the percentage of GSCs, impaired GSC-derived xenograft growth and prolonged tumor-bearing mice survival. Our work identified CPT1A as a critical regulator of mitochondrial dynamics and GSC differentiation, indicating that CPT1A could be developed as a molecular target for GBM cell-differentiation strategy.
Asunto(s)
Neoplasias Encefálicas , Carnitina O-Palmitoiltransferasa , Glioblastoma , Glioma , Dinámicas Mitocondriales , Animales , Neoplasias Encefálicas/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular Tumoral , Glioblastoma/metabolismo , Glioma/metabolismo , Humanos , Ratones , Células Madre Neoplásicas/metabolismoRESUMEN
Glioblastoma (GBM) is a prevalent and highly lethal form of glioma, with rapid tumor progression and frequent recurrence. Excessive outgrowth of pericytes in GBM governs the ecology of the perivascular niche, but their function in mediating chemoresistance has not been fully explored. Herein, we uncovered that pericytes potentiate DNA damage repair (DDR) in GBM cells residing in the perivascular niche, which induces temozolomide (TMZ) chemoresistance. We found that increased pericyte proportion correlates with accelerated tumor recurrence and worse prognosis. Genetic depletion of pericytes in GBM xenografts enhances TMZ-induced cytotoxicity and prolongs survival of tumor-bearing mice. Mechanistically, C-C motif chemokine ligand 5 (CCL5) secreted by pericytes activates C-C motif chemokine receptor 5 (CCR5) on GBM cells to enable DNA-dependent protein kinase catalytic subunit (DNA-PKcs)-mediated DDR upon TMZ treatment. Disrupting CCL5-CCR5 paracrine signaling through the brain-penetrable CCR5 antagonist maraviroc (MVC) potently inhibits pericyte-promoted DDR and effectively improves the chemotherapeutic efficacy of TMZ. GBM patient-derived xenografts with high CCL5 expression benefit from combined treatment with TMZ and MVC. Our study reveals the role of pericytes as an extrinsic stimulator potentiating DDR signaling in GBM cells and suggests that targeting CCL5-CCR5 signaling could be an effective therapeutic strategy to improve chemotherapeutic efficacy against GBM.
Asunto(s)
Glioblastoma , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Ratones , Comunicación Paracrina , Pericitos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Neonatal early-onset sepsis (EOS) is associated with high morbidity and mortality. Accurate early diagnosis is crucial for prompt treatment and a better clinical outcome. We aimed to identify new biomarkers for the diagnosis of EOS. A total of 152 neonates with a risk of EOS were divided into an EOS group and a non-EOS group according to the conventional diagnostic criteria. Blood samples were collected within 0-24, 24-48, and 48-72 h after birth. Serum levels of progranulin (PGRN), interleukin (IL)-33, IL-17a, IL-23, IL-6, tumor necrosis factors α (TNF-α), interferon γ (IFN-γ), granulocyte-macrophage colony-stimulating factor (GM-CSF), procalcitonin (PCT), and C-reactive protein (CRP) were determined. PGRN levels were significantly elevated in the EOS neonates compared with the levels in the non-EOS neonates (1.53 vs. 0.77 ng/ml (median), P < 0.001), with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.76 (P < 0.001). Compared with PGRN, IL-33, IL-17a, IL-23, IL-6, PCT, and CRP showed significant (AUC > 0.70) but slightly less predictive power for EOS within the same time range. Stepwise multivariate regression analysis identified PGRN, IL-33, and PCT as independent predictors of EOS. In addition, the combined measurements of PGRN, IL-33, and PCT showed significantly higher predictive power for EOS than any of the three markers alone. PGRN showed greater efficacy for predicting EOS than the traditional markers PCT and CRP as well as other potential markers tested in this study. PGRN may serve as an effective biomarker for the early diagnosis of EOS.
Asunto(s)
Interleucina-33/sangre , Sepsis Neonatal/sangre , Sepsis Neonatal/diagnóstico , Polipéptido alfa Relacionado con Calcitonina/sangre , Progranulinas/sangre , Biomarcadores/sangre , Femenino , Humanos , Recién Nacido , Masculino , Análisis Multivariante , Curva ROC , Análisis de Regresión , Factor de Necrosis Tumoral alfaRESUMEN
The temperature-dependent effects on the ultraviolet (UV) photoluminescence (PL) enhancement, blueshift, thermal quenching, and chromaticity of the two-dimensional (2D) Zn nanosheets, 2D-hierarchical ZnO nanostructures, and 2D-hierarchical ZnO/Zn nanostructures are presented. In this study, 2D Zn nanosheets were synthesized using a hot-plate metal vapor deposition technique, after which 2D-hierarchical ZnO nanostructures and ZnO/Zn were prepared from the 2D Zn nanosheets by a simple thermal annealing method. The enhancement and blueshift of the UV PL emissions from the three nanostructures at low temperatures arose from three distinct PL mechanisms. For the ZnO nanostructures, the UV PL emission enhancements and blueshifts at low temperature were due to the conversion of the free excitons (FXs) to neutral-donor-bound-excitons (D0Xs). The ZnO/Zn nanostructures possessed the highest UV PL intensities among the three nanostructures, because the free electrons from the Zn portions across the metal-semiconductor heterojunctions greatly assisted in enhancing the PL emissions. The enhancement and thermal quenching were quantitatively analyzed with simple normalization methods. The results show that all three kinds of nanostructures are excellent candidates for use in UV light emitters.
RESUMEN
Plastic phenotype convention between glioma stem cells (GSCs) and non-stem tumor cells (NSTCs) significantly fuels glioblastoma heterogeneity that causes therapeutic failure. Recent progressions indicate that glucose metabolic reprogramming could drive cell fates. However, the metabolic pattern of GSCs and NSTCs and its association with tumor cell phenotypes remain largely unknown. Here we found that GSCs were more glycolytic than NSTCs, and voltage-dependent anion channel 2 (VDAC2), a mitochondrial membrane protein, was critical for metabolic switching between GSCs and NSTCs to affect their phenotypes. VDAC2 was highly expressed in NSTCs relative to GSCs and coupled a glycolytic rate-limiting enzyme platelet-type of phosphofructokinase (PFKP) on mitochondrion to inhibit PFKP-mediated glycolysis required for GSC maintenance. Disruption of VDAC2 induced dedifferentiation of NSTCs to acquire GSC features, including the enhanced self-renewal, preferential expression of GSC markers, and increased tumorigenicity. Inversely, enforced expression ofVDAC2 impaired the self-renewal and highly tumorigenic properties of GSCs. PFK inhibitor clotrimazole compromised the effect of VDAC2 disruption on glycolytic reprogramming and GSC phenotypic transition. Clinically, VDAC2 expression inversely correlated with glioma grades (Immunohistochemical staining scores of VDAC2 were 4.7 ± 2.8, 3.2 ± 1.9, and 1.9 ± 1.9 for grade II, grade III, and IV, respectively, p < 0.05 for all) and the patients with high expression of VDAC2 had longer overall survival than those with low expression of VDAC2 (p = 0.0008). In conclusion, we demonstrate that VDAC2 is a new glycolytic regulator controlling the phenotype transition between glioma stem cells and non-stem cells and may serves as a new prognostic indicator and a potential therapeutic target for glioma patients.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glucosa/metabolismo , Células Madre Neoplásicas/metabolismo , Fenotipo , Fosfofructoquinasa-1 Tipo C/metabolismo , Canal Aniónico 2 Dependiente del Voltaje/metabolismo , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Plasticidad de la Célula , Clotrimazol/farmacología , Técnicas de Silenciamiento del Gen , Glioblastoma/patología , Glucólisis , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones SCID , Mitocondrias/metabolismo , Clasificación del Tumor , Fosfofructoquinasa-1/antagonistas & inhibidores , Canal Aniónico 2 Dependiente del Voltaje/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Reprogrammed metabolism is a hallmark of cancer. Glioblastoma (GBM) tumor cells predominantly utilize aerobic glycolysis for the biogenesis of energy and intermediate nutrients. However, in GBM, the clinical significance of glycolysis and its underlying relations with the molecular features such as IDH1 mutation and subtype have not been elucidated yet. Herein, based on glioma datasets including TCGA (The Cancer Genome Atlas), REMBRANDT (Repository for Molecular Brain Neoplasia Data) and GSE16011, we established a glycolytic gene expression signature score (GGESS) by incorporating ten glycolytic genes. Then we performed survival analyses and investigated the correlations between GGESS and IDH1 mutation as well as the molecular subtypes in GBMs. The results showed that GGESS independently predicted unfavorable prognosis and poor response to chemotherapy of GBM patients. Notably, GGESS was high in GBMs of mesenchymal subtype but low in IDH1-mutant GBMs. Furthermore, we found that the promoter regions of tumor-promoting glycolytic genes were hypermethylated in IDH1-mutant GBMs. Finally, we found that high GGESS also predicted poor prognosis and poor response to chemotherapy when investigating IDH1-wildtype GBM patients only. Collectively, glycolysis represented by GGESS predicts unfavorable clinical outcome of GBM patients and is closely associated with mesenchymal subtype and IDH1 mutation in GBMs.
Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Glucólisis/genética , Isocitrato Deshidrogenasa/genética , Transcriptoma , Adulto , Anciano , Biomarcadores Farmacológicos , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/mortalidad , Metilación de ADN/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Estudios de Asociación Genética , Glioblastoma/clasificación , Glioblastoma/mortalidad , Glioma/clasificación , Glioma/genética , Glioma/mortalidad , Glioma/patología , Humanos , Masculino , Persona de Mediana Edad , Mutación , Pronóstico , Análisis de SupervivenciaRESUMEN
Necrotizing enterocolitis (NEC) is the most common and frequently dangerous neonatal gastrointestinal disease. Studies have shown broad-spectrum antibiotics plus anaerobic antimicrobial therapy did not prevent the deterioration of NEC among very low birth preterm infants. However, few studies about this therapy which focused on full-term and near-term infant with NEC has been reported. The aim of this study was to evaluate the effect of broad-spectrum antibiotic plus metronidazole in preventing the deterioration of NEC from stage II to III in full-term and near-term infants.A retrospective cohort study based on the propensity score (PS) 1:1 matching was performed among the full-term and near-term infants with NEC (Bell stage ≥II). All infants who received broad-spectrum antibiotics were divided into 2 groups: group with metronidazole treatment (metronidazole was used ≥4 days continuously, 15 mg/kg/day) and group without metronidazole treatment. The depraved rates of stage II NEC between the 2 groups were compared. Meanwhile, the risk factors associated with the deterioration of stage II NEC were analyzed by case-control study in the PS-matched cases.A total of 229 infants met the inclusion criteria. Before PS-matching, we found the deterioration of NEC rate in the group with metronidazole treatment was higher than that in the group without metronidazole treatment (18.1% [28/155] vs 8.1% [6/74]; P = 0.048). After PS-matching, 73 pairs were matched, and the depraved rate of NEC in the group with metronidazole treatment was not lower than that in the group without metronidazole treatment (15.1% vs 8.2%; P = 0.2). Binary logistic regression analysis showed that sepsis after NEC (odds ratio [OR] 3.748, 95% confidence interval [CI] 1.171-11.998, P = 0.03), the need to use transfusion of blood products after diagnosis of NEC (OR 8.003, 95% CI 2.365-27.087, P = 0.00), and the need of longer time for nasogastric suction were risk factors for stage II NEC progressing to stage III (OR 1.102, 95% CI 1.004-1.21, P = 0.04).Broad-spectrum antibiotic plus metronidazole may not prevent the deterioration of NEC in full-term and near-term infants. Those infants who had sepsis required transfusion of blood products, and needed longer time for nasogastric suction after stage II NEC was more likely to progress to stage III.