Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 950: 175340, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117216

RESUMEN

Ozone (O3) pollution with excessive near-surface O3 levels has been an important environmental issue in China, although the anthropogenic emission reductions (AER) have improved air quality since 2013. In this study, we investigated the sensitivities of atmospheric chemical environment with the urban and rural changes to the AER targeting a typical O3 pollution episode over North China in summer 2019, by conducting two WRF-Chem simulation experiments under two scenarios of anthropogenic emission inventories of years 2012 and 2019 with the meteorological conditions in the 2019 summertime O3 pollution episode for excluding the meteorological impacts on O3 pollution. The results show that the unbalanced AER aroused more serious O3 pollution in urban and rural areas. The intense NO reduction was responsible for the significant increments of urban O3, while the falling NO2 and NO synergistically devoted to the slight O3 variations in rural areas. Induced by the recent-year AER, the urban O3 production was governed by VOCs-limited and transition regime, whereas the NOx-limited regime dominated over rural areas in North China. Also, the AER reinforced the atmospheric oxidation capacity with the elevations of atmospheric oxidants O3 and ROx radicals, strengthening the chemical conversions to secondary inorganic particles. In both urban and rural areas, the sharp drop in SO2 caused a decrease in sulfate fraction, while the enhanced AOC accelerated the transformation to nitrate even when NOx was reduced. The AER induced nitrate to occupy the principal position in secondary PM2.5 in urban and rural areas. The AER promoted daytime and suppressed nighttime the nitrate production in urban areas, and more vigorous conversion of secondary aerosols were found in rural areas with much lower AOC increments. This study provides insights from a case study over North China in distinct responses of urban and rural O3 pollution with secondary particle changes to AER in urban and rural atmospheric environment changes, with implications for an effective abatement strategy on O3 pollution.

2.
Environ Pollut ; 349: 123932, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583796

RESUMEN

By analyzing environmental and meteorological monitoring data over recent years of 2015-2022, the Twain-Hu Basin (THB) in central China was identified as a regional O3 pollution center over China with the highest increasing trend at 1.10 %⸱yr-1 in interannual variations of O3 concentrations with deteriorating O3 pollution over recent years. We explored the spatiotemporal variations in O3 pollution in the THB with ozone suppression (OS) under high air temperature over metropolitan, small urban, and mountainous areas. The bipolarized interannual trends in interannual O3 variations in urban and mountainous areas over central China were characterized with the increasing and decreasing 90th percentiles of the daily maximum 8-h (MDA8-90) O3 concentrations respectively in polluted urban areas and clean mountainous areas over recent eight years. The changes of the near-surface O3 concentrations with air temperature exhibited the inflection points of OS from increasing to decreasing O3 at air temperature of 30.5 °C in mountainous areas, 32.5 °C in small urban areas, and 34.5 °C in metropolitan areas, and the intensity of OS was estimated in the ranking with mountainous areas (-2.30 µg⸱m-3⸱°C-1) > small urban areas (-1.96 µg⸱m-3⸱°C-1) > metropolitan areas (-1.54 µg⸱m-3⸱°C-1), indicating that the OS was more significant over the lower-O3 mountainous areas. This study has implications for understanding O3 pollution variations with the meteorological drivers.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Ozono , Ozono/análisis , China , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Calor , Temperatura , Ciudades
3.
Sci Total Environ ; 923: 171527, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38453079

RESUMEN

The Tibetan Plateau (TP) is essential in modulating climate change in downstream Eastern China (EC). As a meteorology-sensitive pollutant, changes in ozone (O3) in connection with the TP have received limited attention. In this study, using climate analysis of the China High Air Pollutants O3 product and ERA5 reanalysis data of meteorology for 1980-2020, the effect of springtime TP thermal forcing on the warm season (April-September) O3 pollution over EC was investigated. The strong TP thermal effect significantly modulates the interannual variations in O3 pollution with a dipole pattern over EC, inducing more O3 pollution in northern EC regions and alleviating O3 pollution in the southern regions. In northern (southern) EC, strong TP thermal forcing triggers a significant anomalous high (low) pressure center accompanied by anticyclonic (cyclonic) anomalies, resulting in decreased (increased) total cloud cover, increased (reduced) surface downward solar radiation and air temperature, which are conducive to the anomalous increase (decrease) in surface O3 concentrations. Moreover, the key sources of springtime thermal forcing over the TP influence the major O3 pollution regions over southern and northern EC with an inverse pattern, depending on their locations and orientations to the large topography of the TP. This research reveals an important driving factor for the dipole interannual variation in O3 pollution over EC, providing a new prospect for the effect of the TP on atmospheric environmental change.

4.
Sci Total Environ ; 917: 170319, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38278241

RESUMEN

Regional transport of air pollutants is a crucial factor influencing atmospheric environment, and aerosol radiative forcing (ARF) feedback to atmospheric boundary layer (ABL) structure and ambient air pollution is yet to be comprehensively understood over the receptor region of regional transport. By simulating meteorology and air pollutants during a heavy PM2.5 pollution event with WRF-Chem model, we quantitatively investigated the ARF and ABL interaction for PM2.5 pollution over the Twain-Hu Basin (THB), a key receptor region of regional transport over central China. Driven by northerly winds, PM2.5 was transported from upstream north China to downstream THB accompanied by high PM2.5 levels in the free troposphere. The ARF exacerbated local PM2.5 accumulation by up to 20 µg m-3 and inhibited the impact of regional transport on PM2.5 levels in the ABL with reducing near-surface PM2.5 concentrations of 5 µg m-3 over the THB. The ARF-intensified air temperature inversion at the top of ABL was unfavorable for the transported air pollutants crossing the ABL top to the near-surface layer, thus weakening the impact of regional PM2.5 transport on air quality in the receptor region. Meanwhile, the ARF of transported PM2.5 induced updrafts in the free troposphere, promoting vertical mixing of air pollutants with positive feedback on increasing secondary PM2.5 concentrations in the free troposphere. The ARF induced more and less secondary PM2.5 formations respectively in the free troposphere and the near-surface layer during the regional transport period of air pollution. These results enhance our comprehension of aerosol-meteorology feedback in regional changes of atmospheric environment with inverse effects of ARF on PM2.5 pollution of local accumulation and regional transport.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA