RESUMEN
This study aimed to compare the structural and biological activities of neutral ginseng residue oligosaccharides (GRO-N) and neutral ginseng polysaccharides (GP-N). Their structures of GRO-N and GP-N were established based on their molecular weight (Mw), monosaccharide composition, Fourier-transform infrared spectroscopy, methylation, and nuclear magnetic resonance analyses. The Mws of GRO-N and GP-N were 1121.0 Da and 12,791.0 Da, respectively. Both had major chain structures comprising α-D-Glcp-(1â, â4)-α-D-Glcp-(1â, and â4)-α/ß-D-Glcp, with branch points at â4,6)-α-D-Glcp-(1â. Moreover, the branched chain of GRO-N was α-D-Glcp-(1â and â6)-α-D-Glcp-(1â. The branched chain of GP-N was α-D-Glcp-(1â and â4)-α-D-Glcp-(1â. GRO-N, with a lower Mw and more diverse glycosidic bonds, exhibited higher antioxidant, hypoglycemic, and immune activities than GP-N. Cell viability peaked (202.81 ± 4.80 %) at a GRO-N concentration of 200 µg/mL. These findings provide a theoretical basis for further utilization of ginseng residual saccharides.
RESUMEN
Understanding the spatial fishing activity distribution characteristics is important for the sustainable development of fisheries. Spatial nonstationarity is always present, especially in marine ecosystems. To explore how marine environmental factors affect the fishing effort of tuna purse seine vessels, data from 2015 to 2020 on the fishing activities of these fleets and environmental variables in the Western and Central Pacific Ocean (WCPO) were analyzed. A Generalized Additive Model (GAM), Geographically Weighted Regression model (GWR), and Multi-Scale Geographically Weighted Regression (MGWR) model were applied to explore the drivers of fishing activity and the impacts of environmental factors on spatial heterogeneity. The results indicate that: (1) The MGWR models has the highest prediction accuracy and effectively reflects the spatial heterogeneity and multi-scale effects of environmental factors in a year. (2) Environmental factors exhibit significant multi-scale effects and spatial heterogeneity on the fishing activities of purse seine tuna vessels. Sea floor depth, salinity at 200 m depth and sea surface temperature show the greatest spatial heterogeneity in their impact on fishing activities. (3) Sea surface temperature, distance to port, and primary productivity and salinity at 200 m depth are key variables influencing the fishing activities of purse seine tuna vessels. These findings are expected to provide scientific and effective guidance for fishery management and sustainable development by assessing the spatial variations in fishing activities at multiple scales.
RESUMEN
To investigate the spatial and temporal patterns of environmental factors influencing the activity of purse seine tuna fishing vessels, data on fishing efforts of purse seine tuna fleets and environmental factors in the Western and Central Pacific Ocean (WCPO) from 2015 to 2020 were utilized to develop a geographically weighted regression (GWR) model. The results showed that fishing activity was primarily concentrated in the area between 140°E and 175°W, and between 10°S and 5°N. The GWR model showed excellent fitting performance and was suitable for correlation analysis. The environmental factors had a significant spatially heterogeneous effect on the fishing activity of purse seine tuna fishing vessels. The sea surface temperature, primary productivity at 200 m depth, and dissolved oxygen below the surface had the greatest spatially heterogeneous effect and are important environmental variables influencing the activity of purse seine tuna vessels in the WCPO. This study provides new methods for exploring the spatial distribution of fishing vessel activity to support science-based conservation and management.
RESUMEN
In recent years, there have been frequent jellyfish outbreaks in Chinese coastal waters, significantly impacting the structure, functionality, safety, and economy of nuclear power plant cooling water intake and nearby ecosystems. Therefore, this study focuses on jellyfish outbreaks in Chinese coastal waters, particularly near the Shandong Peninsula. By analyzing jellyfish abundance data, a Generalized Additive Model integrating environmental factors reveals that temperature and salinity greatly influence jellyfish density. The results show variations in jellyfish density among years, with higher densities in coastal areas. The model explains 42.2% of the variance, highlighting the positive correlation between temperature (20-26 °C) and jellyfish density, as well as the impact of salinity (27.5-29‱). Additionally, ocean currents play a significant role in nearshore jellyfish aggregation, with a correlation between ocean currents and site coordinates. This study aims to investigate the relationship between jellyfish blooms and environmental factors. The results obtained from the study provide data support for the prevention and control of blockages in nuclear power plant cooling systems, and provide a data basis for the implementation of monitoring measures in nuclear power plants.
RESUMEN
Doxorubicin (DOX) is a potent chemotherapeutic agent known for its multi-organ toxicity, especially in the heart, which limits its clinical application. The toxic side effects of DOX, including DNA damage, oxidative stress, mitochondrial dysfunction and cell apoptosis, are intricately linked to the involvement of nicotinamide adenine dinucleotide (NAD+). To assess the effectiveness of the NAD+ precursor nicotinamide mononucleotide (NMN) in counteracting the multi-organ toxicity of DOX, a mouse model was established through DOX administration, which led to significant reductions in NAD+ in tissues with evident injury, including the heart, liver and lungs. NMN treatment alleviated both multi-organ fibrosis and mortality in mice. Mechanistically, tissue fibrosis, macrophage infiltration and DOX-related cellular damage, which are potentially implicated in the development of multi-organ fibrosis, could be attenuated by NAD+ restoration. Our findings provide compelling evidence for the benefits of NMN supplementation in mitigating the adverse effects of chemotherapeutic drugs on multiple organs.
Asunto(s)
Doxorrubicina , Fibrosis , Mononucleótido de Nicotinamida , Animales , Doxorrubicina/efectos adversos , Mononucleótido de Nicotinamida/farmacología , Ratones , Suplementos Dietéticos , Masculino , NAD/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patologíaRESUMEN
Ecological fishery management requires high-precision fishery information to support resource management and marine spatial planning. In this paper, the Automatic Identification System (AIS) was adopted to extract the spatial information on the fishing grounds of light purse seine vessels in the Northwest Pacific Ocean. The spatial distributions of fishing grounds mapped by the data mining, kernel density analysis and hotspot analysis methods were compared. The spatial similarity index was applied to determine the spatial consistency between the computed spatial information and fisheries resource information. Finally, the spatial information derived by the best method was used to investigate the characteristics of fishing activity. The results showed that: the speed of light purse seine vessels related to operations was lower than 1.6 knots. The spatial information extracted by the three methods was consistent with the catch data distribution, and the spatial similarity between the fishing effort and catch data was the highest. The spatial variation in fishing activity was similar to that in the chub mackerel migration route. AIS data could be used to provide high-resolution fishery information. Light purse seine fishing vessels typically operate and travel along the exclusive economic zone boundary, and increased attention must be given to fishing vessel operation supervision. A comprehensive supervision system can be employed to monitor the operations of fishing vessels more effectively. The results of this study can provide technical support for the management of fishing activities and conservation of marine resources in this region using AIS data.
RESUMEN
Current research has found the amorphous/crystal interface has some unexpected electrochemical behaviors. This work designed a surface modification strategy using NaBH4 to induce in situ conversion of the surface structure of Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) into TM-B-O amorphous interface layer. Oxidizing the surface from transition metals (TM) with high valence and reductive BH4- in a weak polar medium of ethanol results in an easy redox reacton. A TM-B-O amorphous structure is formed on NCM811 surface. The action of reactive wetting ensures a complete and uniform structure evolution of the surface crystals. The complete coverage protects the outer crystal and the heterogeneous interface impedance between the modified layer and bulk is reduced. More importantly, this amorphous interface layer through in situ conversion enhances the heterogeneous link at interface and its own structural stability. The modified NCM811 (TB2@NCM) treated with 1 wt % NaBH4 shows excellent electrochemical performance, especially cyclic stability. At a high cutoff voltage of 4.5 V, the capacity retention was 72.5% at 1 C after 500 cycles. The electrode achieves 173.7 mAh·g-1 at 10 C. This work creates a modifying strategy with potential application prospect due to simple technology with low-cost raw material under mild operating conditions.
RESUMEN
The recycling of key components in waste lithium-ion batteries (LIBs) is an important route to make up for the shortage of battery materials. Metal separation and purification is an important step. It is of great significance to propose an efficient and green separation technology. In this paper, an electrochemical precipitation method was applied to metal separation from spent LiNi0.5Mn1.5O4 cathode material. The Li and metal elements were effective separated and the precipitates were then used as precursor to synthesize high-performance R-O3-NaNFM cathode material for sodium-ion batteries. The R-O3-NaNFM exhibits excellent electrochemical cycling stability. The capacity retains 71.3 mAh g-1 after a long-term cycling of 200 times at 1 C. This method offers a referable strategy of the recycling for the waste cathode material in spent LIBs.
RESUMEN
To investigate whether bullying and psychological conditions are correlated, this study analyzed a survey of primary and secondary school students from Zigong City, Sichuan Province. A total of 95,545 students completed a personal information questionnaire, the Multidimensional Peer-Victimization Scale (MPVS), and eight other scales pertaining to various psychological problems. The data showed that 68,315 (71.5%) participants experienced school bullying at varying degrees, indicating the prevalence of bullying among adolescents. The chi-square tests revealed a strong correlation between school bullying and psychological conditions. This correlation was further explored through multivariate logistic regression, showing that students who experienced mild bullying had a 3.10 times higher probability of emotional and behavioral problems, 4.06 times higher probability of experiencing prodromal symptoms of mental illness, 4.72 times higher probability of anxiety, 3.28 times higher probability of developing post-traumatic stress disorder (PTSD), 4.07 times higher probability of poor sleep quality, 3.13 times higher probability of internet addiction, 2.18 times higher probability of poor mental health, and 3.64 times higher probability of depression than students who did not experience bullying. The corresponding probabilities for students who experienced severe bullying were 11.35, 17.35, 18.52, 12.59, 11.67, 12.03, 4.64, and 5.34 times higher, respectively. In conclusion, school bullying and psychological conditions are significantly correlated among primary and secondary school students, and the more severe the bullying, the higher the probability to suffer from psychological problems.
RESUMEN
The increasing demand for graphite and the higher lithium content than environment abundance make the recycling of anode in spent lithium-ion batteries (LIBs) also become an inevitable trend. This work proposes a simple pathway to convert the retired graphite to high-performance expanded graphite (EG) under mild conditions. After the oxidation and intercalation by FeCl3 for the retired graphite, H2O2 molecules are more likely to penetrate into the extended layers. And the gas phase diffusion caused by the produced O2 from the redox reaction between FeCl3 and H2O2 further promotes lattice expansion of interlayers (0.535 nm), which is beneficial to the stripping of graphene oxide (GO) with fewer layers. The EG exhibits excellent electrochemical performances in both LIBs and sodium-ion batteries (SIBs). It delivers 331.5 mAh g-1 at 3C (1C = 372 mA g-1) in LIBs, while it achieves 176.8 mAh g-1 at 3C (1C = 120 mA g-1) in SIBs. Then the capacity retains 753.6 (LIBs) and 201.6 (SIBs) mAh g-1 after a long-term cycling of 500 times at 1C, respectively. The full cells with the EG electrodes after prelithium/presodiation also show excellent cycle stability. Thus, this work offers another referable strategy for the recycling of waste graphite in spent LIBs.
RESUMEN
MAIN CONCLUSION: GRA117 is crucial in the process of carbon assimilation in rice as it regulates the development of chloroplasts, which in turn facilitates the Calvin-Benson cycle. Carbon assimilation is a critical process for plant growth, and despite numerous relevant studies, there are still unknown constraints. In this study, we isolated a rice mutant, gra117, which exhibited seedling albinism, delayed chloroplast development, decreased chlorophyll content, reduced yield, and seedling stress susceptibility, as compared to WT. Our further investigations revealed that gra117 had a significantly lower net photosynthetic carbon assimilation rate, as well as reduced levels of Rubisco enzyme activity, RUBP, PGA, carbohydrate, protein content, and dry matter accumulation. These findings provide evidence for decreased carbon assimilation in gra117. By mapping cloning, we discovered a 665 bp insertion in the GRA117 promoter region that decreases GRA117 transcriptional activity and causes the gra117 phenotype. GRA117 encodes PfkB-type fructokinase-like 2, which is subcellularly localized in chloroplasts and is widely expressed in various rice tissues, particularly at high levels in leaf tissues. GRA117 transcription is regulated by the core region 1029 bp before the start codon. Our quantitative RT-PCR and Western blot assays showed that GRA117 promotes the expression and translation of photosynthetic genes. RNA-Seq analysis revealed that GRA117 plays a significant role in photosynthetic carbon fixation, carbon metabolism, and chloroplast ribosome-related pathways. Our study supports that GRA117 promotes the Calvin-Benson cycle by regulating chloroplast development, ultimately leading to enhanced carbon assimilation in rice.
Asunto(s)
Oryza , Oryza/metabolismo , Carbono/metabolismo , Fotosíntesis/genética , Cloroplastos/metabolismo , Regiones Promotoras Genéticas/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Myocardial ischemia/reperfusion (MI/R) injury is a life-threatening syndrome with high morbidity and mortality. Zhishi-Xiebai-Guizhi Decoction (ZSXBGZD) is a classic traditional Chinese medicine formula, used to treat cardiovascular diseases for centuries. However, its underlying medicinal mechanism has not been clearly elucidated, which hinders its widespread application. Here, the curative effects and therapeutic mechanism of ZSXBGZD against MI/R were addressed based on an integration of pharmaceutical evaluation and cellular metabolomics. First, a hypoxia/reoxygenation (H/R) model in H9c2 cells was employed to resemble MI/R and multiple pharmacological indicators were performed to assess the efficacy of ZSXBGZD. The results showed that ZSXBGZD possessed exceptional ability in attenuating cardiomyocyte injury, concerning oxidative stress, mitochondrial dysfunction, energy acquisition and cell apoptosis. Furthermore, a cell metabolomics approach based on HILIC and UPLC-Q-TOF-MS coupled with multivariate analysis was conducted to explore the metabolic regulation of ZSXBGZD. 38 differential polar metabolites related to H/R were uncovered, and 34 of them were reversed to normal state after the treatment of ZSXBGZD, revealing the perturbations of energy metabolism and amino acid metabolism. Moreover, formula decomposition justified the combination of single herbs to form ZSXBZGD and confirmed the pivotal status of Allii Macrostemonis Bulbus and Trichosanthis Fructus.
Asunto(s)
Hipoxia , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Hipoxia/metabolismo , Estrés Oxidativo , ApoptosisRESUMEN
To solve these problems of poor supporting effect and serious deformation and failure of surrounding rock of mining roadway under deep mining stress, a FLAC-3D numerical calculation model is established with -800 m level no. 2424 upper roadway in the Suncun Coal Mine as the background to compare the stress, deformation, and failure law of surrounding rock of mining roadway under once support and multi-level support with the same support strength. It is found that the multi-level support technology has obvious advantages in the surrounding rock of the horizontal roadway on the 2424 working face. From this, the key parameters of multi-level support are determined, and the field industrial test is carried out. The results show that the overall deformation of the surrounding rock is obviously reduced after multi-level support. The displacement of the two sides is reduced by about 40%, the displacement of the roof and floor is reduced by about 30%, and the plastic zone of the roadway is reduced by about 75%. The peak value of concentrated stress decreases from 98.7 MPa to 95.8 MPa, which decreases slightly. The integrity and stability of the surrounding rock are excellent, and the support effect is satisfactory. The research can provide reference and technical support for surrounding rock control of deep high-stress mining roadways.
RESUMEN
Exosomes are considered as potential biomarkers that can reflect information from their parent cell-associated cancer microenvironment. Recently, aptasensors have been widely used for cancer and tumor exosome detection. Aptamers related to exosome surface proteins are usually used to introduce a sequence; the aptamer is used for exosome recognition, and the introduced sequence is used to form G-quadruplexes and for signal amplification. In this paper, we found that the EpCAM aptamer is rich in guanine and unimolecular G-quadruplex with a two-layer G-tetrad under acidic conditions, and we investigated its topology, thermal stability and dissociation constant with hemin. Based on this, our proposed colorimetric aptamer sensor combines the unmodified EpCAM aptamer with hemin to construct a hemin/G-quadruplex DNAzyme and catalyze the TMB-H2O2 system to generate a strong colorimetric signal. Therefore, colorimetric signal changes were negatively correlated with the exosome concentration. The linear range of the 1 h assay was 106-108 particles per mL, and the detection limit was 3.94 × 105 particles per mL. In addition, this method can detect exosomes in complex fetal bovine serum samples with good specificity and high sensitivity toward exosomes from breast, liver, and lung cancers with abnormal EpCAM protein expression.
Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN Catalítico , Exosomas , G-Cuádruplex , ADN Catalítico/genética , Hemina/metabolismo , Colorimetría/métodos , Exosomas/metabolismo , Peróxido de Hidrógeno/metabolismo , Molécula de Adhesión Celular Epitelial , Aptámeros de Nucleótidos/metabolismo , Técnicas Biosensibles/métodos , Límite de DetecciónRESUMEN
BACKGROUND: Early leaf senescence influences yield and yield quality by affecting plant growth and development. A series of leaf senescence-associated molecular mechanisms have been reported in rice. However, the complex genetic regulatory networks that control leaf senescence need to be elucidated. RESULTS: In this study, an early senescence 2 (es2) mutant was obtained from ethyl methanesulfonate mutagenesis (EMS)-induced mutational library for the Japonica rice cultivar Wuyugeng 7 (WYG7). Leaves of es2 showed early senescence at the seedling stage and became severe at the tillering stage. The contents of reactive oxygen species (ROS) significantly increased, while chlorophyll content, photosynthetic rate, catalase (CAT) activity significantly decreased in the es2 mutant. Moreover, genes which related to senescence, ROS and chlorophyll degradation were up-regulated, while those associated with photosynthesis and chlorophyll synthesis were down-regulated in es2 mutant compared to WYG7. The ES2 gene, which encodes an inositol polyphosphate kinase (OsIPK2), was fine mapped to a 116.73-kb region on chromosome 2. DNA sequencing of ES2 in the mutant revealed a missense mutation, ES2 was localized to nucleus and plasma membrane of cells, and expressed in various tissues of rice. Complementation test and overexpression experiment confirmed that ES2 completely restored the normal phenotype, with chlorophyll contents and photosynthetic rate increased comparable with the wild type. These results reveal the new role of OsIPK2 in regulating leaf senescence in rice and therefore will provide additional genetic evidence on the molecular mechanisms controlling early leaf senescence. CONCLUSIONS: The ES2 gene, encoding an inositol polyphosphate kinase localized in the nucleus and plasma membrane of cells, is essential for leaf senescence in rice. Further study of ES2 will facilitate the dissection of the genetic mechanisms underlying early leaf senescence and plant growth.
Asunto(s)
Envejecimiento/genética , Inositol/genética , Inositol/metabolismo , Oryza/genética , Oryza/fisiología , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Envejecimiento/fisiología , China , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hojas de la Planta/genética , Hojas de la Planta/fisiologíaRESUMEN
BACKGROUND: Chloroplasts are essential for photosynthesis and play key roles in plant development. High temperature affects structure of chloroplasts and metabolism in plants. The seryl-tRNA synthetase plays an important role in translation of proteins. Although seryl-tRNA synthetase has been widely studied in microbes and animals, few studies have reported about its role in chloroplast development under high temperature in rice. RESULTS: In this study, we isolated a novel temperature-sensitive chlorophyll-deficient 11 (tscd11) mutant by ethyl methane sulfonate (EMS) mutagenesis of japonica variety Wuyujing7. The tscd11 mutant developed albino leaves at the 3-leaf stage under high temperature (35 °C), but had normal green leaves under low temperature (25 °C). Consistent with the albino phenotype, impaired chloroplasts, decreased chlorophyll content and increased ROS accumulation were found in the tscd11 mutant at 35 °C. Fine mapping and DNA sequencing of tscd11 revealed a missense mutation (G to A) in the eighth exon of LOC_Os11g39670 resulted in amino acid change (Glu374 to Lys374). The TSCD11 gene encodes a seryl-tRNA synthetase localized to chloroplast. Complementation test confirmed that the point mutation in TSCD11 is responsible for the phenotype of tscd11. TSCD11 is highly expressed in leaves. Compared with the wild type (WT), mutation in TSCD11 led to significant alteration in expression levels of genes associated with chlorophyll biosynthesis, photosynthesis and chloroplast development under high temperature. CONCLUSIONS: TSCD11, encoding a seryl-tRNA synthetase localized to chloroplast, is vital to early chloroplast development at high temperature in rice, which help to further study on the molecular mechanism of chloroplast development under high temperature.
RESUMEN
Rice (Oryza sativa L.) is an important cereal that provides food for more than half of the world's population. Besides grain yield, improving grain quality is also essential to rice breeders. Amylose content (AC), gelatinization temperature (GT) and gel consistency (GC) are considered to be three indicators for cooking and eating quality in rice. Using a genetic map of RILs derived from the super rice Liang-You-Pei-Jiu with high-density SNPs, we detected 3 QTLs for AC, 3 QTLs for GT, and 8 QTLs for GC on chromosomes 3, 4, 5, 6, 10, and 12. Wx locus, an important determinator for AC and GC, resided in one QTL cluster for AC and GC, qAC6 and qGC6 here. And a novel major QTL qGC10 on chromosome 10 was identified in both Lingshui and Hangzhou. With the BC4F2 population derived from a CSSL harboring the segment for qGC10 from 93-11 in PA64s background, it was fine mapped between two molecular markers within 181 kb region with 27 annotated genes. Quantitative real-time PCR results showed that eight genes were differentially expressed in endosperm of two parents. After DNA sequencing, only LOC_Os10g04900, which encodes a F-box domain containing protein, has 2 bp deletion in the exon of PA64s, resulting in a premature stop codon. Therefore, LOC_Os10g04900 is considered to be the most likely candidate gene for qGC10 associated with gel consistency. Identification of qGC10 provides a new genetic resource for improvement of rice quality.
RESUMEN
Enriching zinc (Zn) and selenium (Se) levels, while reducing cadmium (Cd) concentration in rice grains is of great benefit for human diet and health. Large natural variations in grain Zn, Se, and Cd concentrations in different rice accessions enable Zn/Se-biofortification and Cd-minimization through molecular breeding. Here, we report the development of new elite varieties by pyramiding major quantitative trait loci (QTLs) that significantly contribute to high Zn/Se and low Cd accumulation in grains. A chromosome segment substitution line CSSLGCC7 with the PA64s-derived GCC7 allele in the 93-11 background, exhibited steadily higher Mn and lower Cd concentrations in grains than those of 93-11. This elite chromosome segment substitution line (CSSL) was used as the core breeding material to cross with CSSLs harboring other major QTLs for essential mineral elements, especially CSSLGZC6 for grain Zn concentration and CSSLGSC5 for grain Se concentration. The CSSLGCC7+GZC6 and CSSLGCC7+GSC5 exhibited lower Cd concentration with higher Zn and Se concentrations in grains, respectively. Our study thus provides elite materials for rice breeding targeting high Zn/Se and low Cd concentrations in grains.
Asunto(s)
Cadmio/metabolismo , Oryza/metabolismo , Selenio/metabolismo , Zinc/metabolismo , Alelos , Grano Comestible/genética , Grano Comestible/metabolismo , Oryza/genética , Sitios de Carácter Cuantitativo/genéticaRESUMEN
The indica and japonica rice (Oryza sativa) subspecies differ in nitrate (NO3-) assimilation capacity and nitrogen (N) use efficiency (NUE). Here, we show that a major component of this difference is conferred by allelic variation at OsNR2, a gene encoding a NADH/NADPH-dependent NO3- reductase (NR). Selection-driven allelic divergence has resulted in variant indica and japonica OsNR2 alleles encoding structurally distinct OsNR2 proteins, with indica OsNR2 exhibiting greater NR activity. Indica OsNR2 also promotes NO3- uptake via feed-forward interaction with OsNRT1.1B, a gene encoding a NO3- uptake transporter. These properties enable indica OsNR2 to confer increased effective tiller number, grain yield and NUE on japonica rice, effects enhanced by interaction with an additionally introgressed indica OsNRT1.1B allele. In consequence, indica OsNR2 provides an important breeding resource for the sustainable increases in japonica rice yields necessary for future global food security.
Asunto(s)
Nitrato-Reductasa/genética , Nitrógeno/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Alelos , Transporte Biológico , Nitrato-Reductasa/química , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Oryza/enzimología , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismoRESUMEN
BACKGROUND: Detecting and mapping chromosomal regions that are related to quantitative phenotypic variation in chromosome segment substitution lines (CSSLs) provides an effective means to characterize the genetic basis of complex agronomic trait. CSSLs are also powerful tools for studying the effects of quantitative trait loci (QTLs) pyramiding and interaction on phenotypic variation. RESULTS: Here, we developed three sets of CSSLs consisting of 81, 55, and 61 lines, which were derived from PA64s × 9311, Nipponbare × 9311 and PA64s × Nipponbare crosses, respectively. All of the 197 CSSLs were subjected to high-throughput genotyping by whole-genome resequencing to obtain accurate physical maps for the 3 sets of CSSLs. The 3 sets of CSSLs were used to analyze variation for 11 major agronomic traits in Hangzhou and Shenzhen and led to the detection of 71 QTLs with phenotypic effect that ranged from 7.6% to 44.8%. Eight QTLs were commonly detected under two environments for the same phenotype, and there were also 8 QTL clusters that were found. Combined with GWAS on grain length and expression profiles on young panicle tissues, qGL1 detected in CSSLs was fine mapped within a 119 kb region on chromosome 1 and LOC_Os01g53140 and LOC_Os01g53250 were the two most likely candidate genes. CONCLUSIONS: Our results indicate that developing CSSLs genotyped by whole-genome resequencing are powerful tools for basic genetic research and provide a platform for the rational design of rice breeding. Meanwhile, the conjoint analysis of different CSSLs, natural population and expression profiles can facilitate QTL fine mapping.