Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5699, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709778

RESUMEN

Phototherapy of deep tumors still suffers from many obstacles, such as limited near-infrared (NIR) tissue penetration depth and low accumulation efficiency within the target sites. Herein, stimuli-sensitive tumor-targeted photodynamic nanoparticles (STPNs) with persistent luminescence for the treatment of deep tumors are reported. Purpurin 18 (Pu18), a porphyrin derivative, is utilized as a photosensitizer to produce persistent luminescence in STPNs, while lanthanide-doped upconversion nanoparticles (UCNPs) exhibit bioimaging properties and possess high photostability that can enhance photosensitizer efficacy. STPNs are initially stimulated by NIR irradiation before intravenous administration and accumulate at the tumor site to enter the cells through the HER2 receptor. Due to Pu18 afterglow luminescence properties, STPNs can continuously generate ROS to inhibit NFκB nuclear translocation, leading to tumor cell apoptosis. Moreover, STPNs can be used for diagnostic purposes through MRI and intraoperative NIR navigation. STPNs exceptional antitumor properties combined the advantages of UCNPs and persistent luminescence, representing a promising phototherapeutic strategy for deep tumors.


Asunto(s)
Carcinoma in Situ , Neoplasias de la Vesícula Biliar , Nanopartículas , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Luminiscencia
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122860, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37201333

RESUMEN

Hypochlorous acid (HOCl) is an essential endogenous reactive oxygen species in biological systems, playing a critical role in various physiological processes. Real-time monitoring of HOCl concentration in living organisms is essential for understanding its biological functions and pathological roles. In this study, we developed a novel fluorescent probe based on benzobodipy, BBDP, for rapid and sensitive detection of HOCl in aqueous solutions. The probe exhibited a significant fluorescence turn-on response to HOCl based on its specific oxidation reaction towards diphenylphosphine, with high selectivity, instantaneous response (less than 10 s), and low detection limit (21.6 nM). Furthermore, bioimaging results illustrated that the probe could be applied for real-time fluorescence imaging of HOCl in live cells and zebrafish. The development of BBDP may provide a new tool for exploring the biological functions of HOCl and its pathological roles in diseases.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Animales , Pez Cebra , Compuestos de Boro , Imagen Óptica
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122655, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36966730

RESUMEN

Due to the highly significant biological activity of hypochlorous acid, the monitoring of its concentration in vivo has received extensive attention. In this work, a photoinduced electron transfer (PeT) based benzo-bodipy fluorescent probe BBy-T has been developed for the rapid, sensitive, and selective detection of HClO in an aqueous solution. Based on the HClO-specific oxidation reaction, BBy-T exhibited a distinct fluorescence turn-on response to HClO with a remarkable Stokes shift (84 nm), immediate response (less than 20 s), and low detection limit (13.7 nM). In addition, the bioimaging results indicated that the probe BBy-T could be applied to real-time fluorescence imaging of living HeLa cells as well as living zebrafish.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Humanos , Animales , Células HeLa , Pez Cebra , Oxidación-Reducción , Imagen Óptica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA