Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 18(32): 21184-21197, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39094098

RESUMEN

Rechargeable aqueous zinc-ion batteries (AZIBs) are gaining recognition as promising next-generation energy storage solution, due to their intrinsic safety and low cost. Nevertheless, the advancement of AZIBs is greatly limited by the abnormal growth of zinc dendrites during cycling. Electrolyte additives are effective at suppressing zinc dendrites, but there is currently no effective additive screening criterion. Herein, we propose employing the interfacial electrostatic adsorption strength of zinc ions for the initial screening of additives. Subsequently, dendrite-free plating is achieved by employing the anionic surfactant sodium dodecyl benzenesulfonate (SDBS) to enhance electrostatic adsorption. The cycled zinc anode exhibited a dense plating morphology and a high (002) orientation (I002/I101 = 22). The Zn||MnO2 full cell with SDBS exhibited a capacity retention of 85% after 1000 cycles at 1 A g-1. Furthermore, an instantaneous nucleation model and continuous nucleation model (CNM) are constructed to reveal the microscale plating/stripping dynamics under the scenarios of weak adsorption and strong adsorption. The CNM accurately explains the self-optimizing reconstruction of electrodes resulting from enhanced electrostatic adsorption. Our exploration was extended to other anionic surfactants (sodium dodecyl sulfate and disodium laureiminodipropionate), confirming the effectiveness of strong electrostatic adsorption in the screening of electrolyte additives.

2.
Chemistry ; : e202304106, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083260

RESUMEN

Sodium-oxygen batteries have been regarded as promising energy storage devices due to their low overpotential and high energy density. Its applications, however, still face formidable challenges due to the lack of understanding about the influence of electrocatalysts on the discharge products. Here, a phosphorous and nitrogen dual-doped carbon (PNDC) based cathode is synthesized to increase the electrocatalytic activity and to stabilize the NaO2 superoxide nanoparticle discharge products, leading to enhanced cycling stability when compared to the nitrogen-doped carbon (NDC). The PNDC air cathode exhibits a low overpotential (0.36 V) and long cycling stability (120 cycles). The reversible formation/decomposition and stabilization of the NaO2 discharge products are clearly proven by in-situ synchrotron X-ray diffraction and ex-situ X-ray diffraction. Based on the density functional theory calculation, the PNDC has much stronger adsorption energy (-2.85 eV) for NaO2 than that of NDC (-1.80 eV), which could efficiently stabilize the NaO2 discharge products.

3.
Sci Adv ; 10(31): eado7331, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39083613

RESUMEN

Dewatering of aqueous azeotropes is crucial and pervasive in raw chemical refineries and solvent recovery in the chemical industry but is recognized as one of the most energy-intensive processes. Pervaporation using crystalline molecular sieve membranes provides an energy-efficient solution, but stress loads stemming from thermal and mechanical risks of pervaporation are most likely to cause membrane cracks, which greatly reduces reliability of membranes in real-world applications. Here, we propose adaptive healing of stress-induced dynamic cracks (AHSDC) in the membrane in a risk-responding manner before separation by using in situ-formed nanoparticles in the same chemical environment. These nanoparticles naturally filled in fissure gaps once cracks formed in the membrane, forming adaptive healing zones. Without loss of dewatering capacity, the separation durability of the membrane after AHSDC was improved by at least two orders of magnitude. The membrane also exhibited tolerance to industrial-grade azeotropes that epitomize industrial multisource nature and complexity.

4.
ACS Appl Mater Interfaces ; 16(14): 17657-17665, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38531381

RESUMEN

Rechargeable sodium-carbon dioxide (Na-CO2) batteries have been proposed as a promising CO2 utilization technique, which could realize CO2 reduction and generate electricity at the same time. They suffer, however, from several daunting problems, including sluggish CO2 reduction and evolution kinetics, large polarization, and poor cycling stability. In this study, a rambutan-like Co3O4 hollow sphere catalyst with abundant oxygen vacancies was synthesized and employed as an air cathode for Na-CO2 batteries. Density functional theory calculations reveal that the abundant oxygen vacancies on Co3O4 possess superior CO2 binding capability, accelerating CO2 electroreduction, and thereby improving the discharge capacity. In addition, the oxygen vacancies also contribute to decrease the CO2 decomposition free energy barrier, which is beneficial for reducing the overpotential further and improving round-trip efficiency. Benefiting from the excellent catalytic ability of rambutan-like Co3O4 hollow spheres with abundant oxygen vacancies, the fabricated Na-CO2 batteries exhibit extraordinary electrochemical performance with a large discharge capacity of 8371.3 mA h g-1, a small overpotential of 1.53 V at a current density of 50 mA g-1, and good cycling stability over 85 cycles. These results provide new insights into the rational design of air cathode catalysts to accelerate practical applications of rechargeable Na-CO2 batteries and potentially Na-air batteries.

5.
J Colloid Interface Sci ; 665: 693-701, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552584

RESUMEN

Metal-Organic Framework (MOF) membranes act as selective layers have offered unprecedented opportunities for energy-efficient and cost-effective gas separation. Searching for the green and sustainable synthesis method of dense MOF membrane has received huge attention in both academia and industry. In this work, we demonstrate an in situ electrochemical potential-induced synthesis strategy to aqueously fabricate Metal Azolate Framework-4 (MAF-4) membranes on polypropylene (PP) support. The constant potential can induce the heterogeneous nucleation and growth of MAF-4, resulting an ultrathin membrane with the thickness of only 390 nm. This high-quality membrane exhibits a high H2/CO2 separation performance with the H2 permeance as high as 1565.75 GPU and selectivity of 11.6. The deployment of this environment friendly one-step fabrication method under mild reaction conditions, such as low-cost polymer substrate, water instead of organic solvent, room temperature and ambient pressure shows great promise for the scale-up of MOF membranes.

6.
Chem Sci ; 15(7): 2601-2611, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38362413

RESUMEN

Water in electrolytes is a double-edged sword in zinc-ion batteries (ZIBs). While it allows for proton insertion in the cathode, resulting in a significant increase in capacity compared to that of organic ZIBs, it also causes damage to electrodes, leading to performance degradation. To overcome the capacity-stability trade-off, organic solvents containing a small amount of water are proposed to mitigate the harmful effects of water while ensuring sufficient proton insertion. Remarkably, in a Zn(OTf)2 electrolyte using 8% H2O in acetonitrile as the solvent, Zn‖(NH4)0.5V2O5·0.5H2O exhibited a capacity as high as 490 mA h g-1 at a low current (0.3 A g-1), with a capacity retention of 80% even after 9000 cycles at high current (6 A g-1), simultaneously achieving the high capacity as in pure aqueous electrolytes and excellent stability as in organic electrolytes. We also found that the water content strongly impacts the kinetics and reversibility of ion insertion/extraction and zinc stripping/plating. Furthermore, compared to electrolytes with pure acetonitrile or H2O solvents, electrolytes with only 8% H2O in acetonitrile provide higher capacities at temperatures ranging from 0 to -50 °C. These discoveries enhance our understanding of the mechanisms involved in ZIBs and present a promising path toward enhancing electrolyte solutions for the creation of high-performance ZIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA