Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 334: 118582, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009325

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Radiation-induced heart disease (RIHD) is one of the most serious complications in patients receiving chest radiotherapy, partially offsetting its benefits. At present, there is a lack of effective treatments for RIHD. Ferroptosis is a newly discovered type of cell death that results from iron-dependent lipid peroxide accumulation. It was recently shown that irradiation generates severe ferroptosis, providing new insights for the treatment of RIHD. Abelmoschus manihot (L.) possesses excellent pharmacological properties and is widely used in treating various ischemic heart and brain diseases; however, its efficacy and mechanism in treating RIHD are unknown. AIM: This study aimed to investigate the efficacy and mechanism of total extracts from A. manihot (L.) (TEA) in treating RIHD. MATERIALS AND METHODS: C57BL/6 mice and H9C2 cells were exposed to irradiation to induce RIHD in vivo and in vitro, respectively. In vivo, we evaluated the protective effects of TEA (150 and 300 mg/kg) on RIHD. Body and heart weight changes of mice were calculated in each group, and malondialdehyde (MDA) level, glutathione/oxidized glutathione (GSH/GSSH) and nicotinamide adenine dinucleotide phosphate (NADPH/NADP+) ratios, western blot, heart histology, and immunohistochemistry were used to evaluate TEA effectiveness. We identified the potential mechanism of radiation-induced cardiomyocyte injury in H9C2 cells treated with small interfering RNA. We determined the effective dose of TEA (0.6 mg/mL) using a Cell Counting Kit-8 assay. Intracellular Fe2+ and lipid peroxidation levels were detected by Phen Green™ SK diacetate probe, BODIPY 581/591 C11 staining, and MDA, GSH, and NADPH kits, and the level of target protein was evaluated by immunofluorescence and western blot. RESULTS: Radiation inhibited system Xc-cystine (xCT)/glutathione peroxidase 4 (GPX4) expression and activity in cardiomyocytes in a time and dose-dependent manner. After silencing xCT/GPX4, MDA significantly increased and GSH/GSSH and NADPH/NADP+ ratios were reduced. xCT/GPX4 inhibition drove ferroptosis in radiation-induced H9C2 injury. Oxidative stress in H9C2 was significantly enhanced by irradiation, which also significantly increased NADPH oxidase 4 (NOX4) expression and inhibited nuclear factor E2-related factor 2 (Nrf2) expression in vivo and in vitro. Inhibition of xCT/GPX4 drove ferroptosis in radiation-induced H9C2 injury, which was aggravated by inactivation of Nrf2 and alleviated by inhibition of NOX4. Compared with the ionizing radiation-only group, TEA improved body weight loss, MDA levels, and histological changes induced by irradiation in mice hearts, and increased the ratio of GSH/GSSH and NADPH/NADP+in vivo; it also reduced lipid peroxidation and intracellular Fe2+ accumulation, restored MDA levels, and elevated the ratios of GSH/GSSH and NADPH/NADP+ in irradiation-injured H9C2 cells. TEA up-regulated Nrf2, xCT, and GPX4 expression and inhibited NOX4 expression in vivo and in vitro. CONCLUSIONS: Ferroptosis induced by redox imbalance mediated through the NOX4/xCT/GPX4 axis is a potential mechanism behind radiation-induced cardiomyocyte injury, and can be prevented by TEA.

2.
Eur Radiol ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995383

RESUMEN

OBJECTIVES: We aimed to explore the imaging profile of coronary atherosclerosis, perivascular inflammation, myocardial perfusion, and interstitial fibrosis in diabetes stratified by lipoprotein(a) [Lp(a)] levels. METHODS: In this prospective study, we enrolled diabetic patients who had undergone computed tomography (CT) angiography, stress CT-myocardial perfusion imaging, and late iodine enhancement in 20 months. Then, we categorized them into elevated and normal groups based on an Lp(a) cutoff level of 30 mg/dL. All imaging data, including coronary atherosclerosis parameters, pericoronary adipose tissue (PCAT) density, stress myocardial blood flow (MBF), and extracellular volume (ECV), were collected for further analysis. RESULTS: In total, 207 participants (mean age: 59.1 ± 12.0 years, 111 males) were included in this study. Patients with elevated Lp(a) level had more pronounced percent atheroma volume (2.55% (1.01-9.01%) versus 1.30% (0-4.95%), p = 0.010), and demonstrated a higher incidence of positive remodeling, spotty calcification, and high-risk plaque (HRP) than those with normal Lp(a) levels (75.6% versus 54.8%, p = 0.015; 26.8% versus 9.6%, p = 0.003; 51.2% versus 30.1%, p = 0.011, respectively). Results of the multivariate analysis revealed that after adjusting for all clinical characteristics, elevated Lp(a) levels were an independent parameter associated with HRP (odds ratio = 2.608; 95% confidence interval: 1.254-5.423, p = 0.010). However, no significant difference was found between the two groups in terms of PCAT density, stress MBF, and ECV. CONCLUSIONS: Elevated Lp(a) levels are associated with extensive coronary atherosclerosis and HRP development. However, they are not related to perivascular inflammation, decreased myocardial perfusion, and interstitial fibrosis in diabetes. CLINICAL RELEVANCE STATEMENT: Elevated lipoprotein(a) levels are associated with extensive coronary atherosclerosis and a high incidence of HRPs. However, they are not related to perivascular inflammation, decreased myocardial perfusion, and interstitial fibrosis in diabetes. KEY POINTS: Diabetes is a known risk factor that accelerates cardiovascular disease progression. Diabetics with elevated lipoprotein(a) (Lp(a)) levels had a higher percent atheroma volume and positive remodeling, spotty calcification, and HRPs. Patients with diabetes should be screened for elevated Lp(a) using CCTA for comprehensive evaluation of atherosclerotic characteristics.

3.
Cell Mol Life Sci ; 81(1): 283, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963422

RESUMEN

Protein SUMOylation is a prevalent stress-response posttranslational modification crucial for maintaining cellular homeostasis. Herein, we report that protein SUMOylation modulates cellular signaling mediated by cAMP, an ancient and universal stress-response second messenger. We identify K561 as a primary SUMOylation site in exchange protein directly activated by cAMP (EPAC1) via site-specific mapping of SUMOylation using mass spectrometry. Sequence and site-directed mutagenesis analyses reveal that a functional SUMO-interacting motif in EPAC1 is required for the binding of SUMO-conjugating enzyme UBC9, formation of EPAC1 nuclear condensate, and EPAC1 cellular SUMOylation. Heat shock-induced SUMO modification of EPAC1 promotes Rap1/2 activation in a cAMP-independent manner. Structural modeling and molecular dynamics simulation studies demonstrate that SUMO substituent on K561 of EPAC1 promotes Rap1 interaction by increasing the buried surface area between the SUMOylated receptor and its effector. Our studies identify a functional SUMOylation site in EPAC1 and unveil a novel mechanism in which SUMOylation of EPAC1 leads to its autonomous activation. The findings of SUMOylation-mediated activation of EPAC1 not only provide new insights into our understanding of cellular regulation of EPAC1 but also will open up a new field of experimentation concerning the cross-talk between cAMP/EPAC1 signaling and protein SUMOylation, two major cellular stress response pathways, during cellular homeostasis.


Asunto(s)
AMP Cíclico , Factores de Intercambio de Guanina Nucleótido , Sumoilación , Enzimas Ubiquitina-Conjugadoras , Proteínas de Unión al GTP rap1 , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/química , Humanos , AMP Cíclico/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Proteínas de Unión al GTP rap1/metabolismo , Proteínas de Unión al GTP rap1/genética , Células HEK293 , Simulación de Dinámica Molecular , Complejo Shelterina/metabolismo , Transducción de Señal , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión al GTP rap/metabolismo , Proteínas de Unión al GTP rap/genética , Respuesta al Choque Térmico , Secuencia de Aminoácidos , Unión Proteica
4.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38948745

RESUMEN

Beckwith-Wiedemann Syndrome (BWS) is an epigenetic overgrowth syndrome caused by methylation changes in the human 11p15 chromosomal locus. Patients with BWS exhibit tissue overgrowth, as well as an increased risk of childhood neoplasms in the liver and kidney. To understand the impact of these 11p15 changes, specifically in the liver, we performed single-nucleus RNA sequencing (snRNA-seq) and single-nucleus assay for transposase-accessible chromatin with sequencing (snATAC-seq) to generate paired, cell-type-specific transcriptional and chromatin accessibility profiles of both BWS-liver and nonBWS-liver nontumorous tissue. Our integrated RNA+ATACseq multiomic approach uncovered hepatocyte-specific enrichment and activation of the peroxisome proliferator-activated receptor α (PPARA) - a liver metabolic regulator. To confirm our findings, we utilized a BWS-induced pluripotent stem cell (iPSC) model, where cells were differentiated into hepatocytes. Our data demonstrates the dysregulation of lipid metabolism in BWS-liver, which coincided with observed upregulation of PPARA during hepatocyte differentiation. BWS liver cells exhibited decreased neutral lipids and increased fatty acid ß-oxidation, relative to controls. We also observed increased reactive oxygen species (ROS) byproducts in the form of peroxidated lipids in BWS hepatocytes, which coincided with increased oxidative DNA damage. This study proposes a putative mechanism for overgrowth and cancer predisposition in BWS liver due to perturbed metabolism.

5.
Int J Ophthalmol ; 17(7): 1313-1321, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026912

RESUMEN

AIM: To investigate the clinical features of the ocular surface in patients with different degrees of myopia. METHODS: A cross-sectional study was conducted involving 122 participants with myopia in Beijing Tongren Hospital from February to June, 2023. After completing the Ocular Surface Disease Index (OSDI) score scale, measurements were taken for refraction, biometric parameters and ocular surface parameters. The prevalence, severity and related parameters of the dry eye among different groups based on axial length (AL) were compared. Correlation analysis was performed between ocular surface parameters and refraction/biometric measurement parameters. RESULTS: Statistically significant differences were observed in refractive error, corneal thickness, anterior chamber depth, and subfoveal choroidal thickness among the groups (all P<0.05). With the increase in AL, the incidence and severity of dry eye increased significantly (P<0.05). Moreover, the tear film break-up time (BUT) shortened (P<0.05), and the corneal fluorescein staining (CFS) points increased significantly (P<0.05). OSDI scores were positively correlated with AL and spherical equivalent (SE; both P<0.05); BUT was negatively correlated with AL, SE, and corneal astigmatism (AST; all P<0.05); Schirmer I test (SIT) results were negatively correlated with AL and SE (both P<0.05). CONCLUSION: AL elongation is a risk factor for dry eye onset in myopic participants. The longer the AL, the more severe the dry eye is, with the increased CFS spots and tear film instability. Additionally, SE and AST exhibit negative correlations with dry eye symptom scores and ocular surface parameters.

6.
Talanta ; 277: 126437, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901194

RESUMEN

The Papaya ringspot virus (PRSV)-resistant genetically modified (GM) papaya 'Huanong No.1' has been certified as safe for consumption and widely planted in China for about 18 years. To protect consumers' rights and facilitate government supervision and monitoring, it is necessary to establish a simple, rapid, and specific detection method for 'Huanong No.1'. Herein, we developed a platform based on recombinase polymerase amplification (RPA) coupled with CRISPR-Cas12a for the detection of 'Huanong No.1'. The RPA-CRISPR-Cas12a platform was found to have high specificity, with amplification signals only present in 'Huanong No.1'. Additionally, the platform was highly sensitive, with a limit of detection (LOD) of approximately 20 copies. The detection process was fast and could be completed in less than 1 h. This novel platform enables the rapid on-site visualization detection of 'Huanong No.1', eliminating dependence on laboratory conditions and specialized instruments, and can serve as a technical reference for the rapid detection of other GM plants.


Asunto(s)
Sistemas CRISPR-Cas , Carica , Técnicas de Amplificación de Ácido Nucleico , Plantas Modificadas Genéticamente , Carica/genética , Carica/virología , Sistemas CRISPR-Cas/genética , Plantas Modificadas Genéticamente/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Potyvirus/genética , Potyvirus/aislamiento & purificación , Recombinasas/metabolismo , Límite de Detección , Proteínas Bacterianas , Endodesoxirribonucleasas , Proteínas Asociadas a CRISPR
7.
Cell Death Dis ; 15(6): 386, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824143

RESUMEN

Doxorubicin's antitumor effectiveness may be constrained with ineffective tumor penetration, systemic adverse effects, as well as drug resistance. The co-loading of immune checkpoint inhibitors and doxorubicin into liposomes can produce synergistic benefits and address problems, including quick drug clearance, toxicity, and low drug penetration efficiency. In our previous study, we modified a nanobody targeting CTLA-4 onto liposomes (LPS-Nb36) to be an extremely potent CTLA-4 signal blocker which improve the CD8+ T-cell activity against tumors under physiological conditions. In this study, we designed a drug delivery system (LPS-RGD-Nb36-DOX) based on LPS-Nb36 that realized the doxorubicin and anti-CTLA-4 Nb co-loaded and RGD modification, and was applied to antitumor therapy. We tested whether LPS-RGD-Nb36-DOX could targets the tumor by in vivo animal photography, and more importantly, promote cytotoxic T cells proliferation, pro-inflammatory cytokine production, and cytotoxicity. Our findings demonstrated that the combination of activated CD8+ T cells with doxorubicin/anti-CTLA-4 Nb co-loaded liposomes can effectively eradicate tumor cells both in vivo and in vitro. This combination therapy is anticipated to have synergistic antitumor effects. More importantly, it has the potential to reduce the dose of chemotherapeutic drugs and improve safety.


Asunto(s)
Antígeno CTLA-4 , Doxorrubicina , Sistemas de Liberación de Medicamentos , Liposomas , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Animales , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/metabolismo , Ratones , Sistemas de Liberación de Medicamentos/métodos , Humanos , Línea Celular Tumoral , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Femenino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
8.
Int Ophthalmol ; 44(1): 237, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902457

RESUMEN

PURPOSE: Calculating the intraocular lens (IOL) in patients after corneal refractive surgery presents a challenge. Because an overestimation of corneal power in cases undergone this surgery leading to a subsequent under-correction of IOL power. However, recent advancements in technology have eliable measurement of total corneal power. The aim of this research was to assess the agreement in simulated keratometry (SimK) and total keratometry (TK) values between IOLMaster 700 and Pentacam AXL. METHODS: The study involved 99 patients (99 eyes) undergone small incision lenticule extraction (SMILE) surgery. Each patient underwent scans using IOL Master 700 and Pentacam AXL. The following parameters were recorded: SimK1, SimK2, Total K1 (TK1), and Total K2 (TK2) for IOLMaster 700; and SimK1, SimK2, True Net Power (TNP) K1, TNPK2, Total Corneal Refractive Power (TCRP) K1, and TCRP K2 for Pentacam AXL. Agreement between the two devices was evaluated using Bland-Altman plot, while paired t-test was utilized to compare any differences in the same parameter by both instruments. RESULTS: The results revealed a strong correlation between the two devices.Noticeable comparability was identified for all SimK variables. However, there were noticeable differences in TK measurements as well as TK1-TNPK1, TK2-TNP K2, TK1-TCRP K1, and TK2-TCRP K2 parameters when comparing the two devices. The IOLMaster 700 consistently measured steeper values than the Pentacam AXL, with significant and clinically relevant differences of 1.34, 1.37, 0.87, and 0.95 diopters, respectively. CONCLUSION: While there was a noticeable correlation between the IOLMaster 700 and Pentacam AXL in SimK measurements, a marked difference was noted in TK values. The two devices cannot be used interchangeably when quantifying TK values.


Asunto(s)
Córnea , Topografía de la Córnea , Miopía , Refracción Ocular , Humanos , Masculino , Femenino , Adulto , Córnea/cirugía , Córnea/diagnóstico por imagen , Córnea/patología , Refracción Ocular/fisiología , Topografía de la Córnea/métodos , Miopía/cirugía , Miopía/diagnóstico , Persona de Mediana Edad , Adulto Joven , Lentes Intraoculares , Biometría/métodos , Biometría/instrumentación , Estudios Prospectivos , Reproducibilidad de los Resultados , Agudeza Visual , Cirugía Laser de Córnea/métodos
9.
Basic Res Cardiol ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38834767

RESUMEN

Nuclear factor of activated T cells 5 (NFAT5) is an osmosensitive transcription factor that is well-studied in renal but rarely explored in cardiac diseases. Although the association of Coxsackievirus B3 (CVB3) with viral myocarditis is well-established, the role of NFAT5 in this disease remains largely unexplored. Previous research has demonstrated that NFAT5 restricts CVB3 replication yet is susceptible to cleavage by CVB3 proteases. Using an inducible cardiac-specific Nfat5-knockout mouse model, we uncovered that NFAT5-deficiency exacerbates cardiac pathology, worsens cardiac function, elevates viral load, and reduces survival rates. RNA-seq analysis of CVB3-infected mouse hearts revealed the significant impact of NFAT5-deficiency on gene pathways associated with cytokine signaling and inflammation. Subsequent in vitro and in vivo investigation validated the disruption of the cytokine signaling pathway in response to CVB3 infection, evidenced by reduced expression of key cytokines such as interferon ß1 (IFNß1), C-X-C motif chemokine ligand 10 (CXCL10), interleukin 6 (IL6), among others. Furthermore, NFAT5-deficiency hindered the formation of stress granules, leading to a reduction of important stress granule components, including plakophilin-2, a pivotal protein within the intercalated disc, thereby impacting cardiomyocyte structure and function. These findings unveil a novel mechanism by which NFAT5 inhibits CVB3 replication and pathogenesis through the promotion of antiviral type I interferon signaling and the formation of cytoplasmic stress granules, collectively identifying NFAT5 as a new cardio protective protein.

10.
Eur J Radiol ; 176: 111538, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838412

RESUMEN

OBJECTIVES: This study aimed to investigate the diagnostic performance of computed tomography (CT) fractional flow reserve (CT-FFR) derived from standard images (STD) and images processed via first-generation (SnapShot Freeze, SSF1) and second-generation (SnapShot Freeze 2, SSF2) motion correction algorithms. METHODS: 151 patients who underwent coronary CT angiography (CCTA) and invasive coronary angiography (ICA)/FFR within 3 months were retrospectively included. CCTA images were reconstructed using an iterative reconstruction technique and then further processed through SSF1 and SSF2 algorithms. All images were divided into three groups: STD, SSF1, and SSF2. Obstructive stenosis was defined as a diameter stenosis of ≥ 50 % in the left main artery or ≥ 70 % in other epicardial vessels. Stenosis with an FFR of ≤ 0.8 or a diameter stenosis of ≥ 90 % (as revealed via ICA) was considered ischemic. In patients with multiple lesions, the lesion with lowest CT-FFR was used for patient-level analysis. RESULTS: The overall quality score in SSF2 group (median = 3.67) was markedly higher than that in STD (median = 3) and SSF1 (median = 3) groups (P < 0.001). The best correlation (r = 0.652, P < 0.001) and consistency (mean difference = 0.04) between the CT-FFR and FFR values were observed in the SSF2 group. At the per-lesion level, CT-FFRSSF2 outperformed CT-FFRSSF1 in diagnosing ischemic lesions (area under the curve = 0.887 vs. 0.795, P < 0.001). At the per-patient level, the SSF2 group also demonstrated the highest diagnostic performance. CONCLUSION: The SSF2 algorithm significantly improved CCTA image quality and enhanced its diagnostic performance for evaluating stenosis severity and CT-FFR calculations.


Asunto(s)
Algoritmos , Angiografía por Tomografía Computarizada , Angiografía Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Humanos , Reserva del Flujo Fraccional Miocárdico/fisiología , Femenino , Masculino , Angiografía por Tomografía Computarizada/métodos , Persona de Mediana Edad , Estudios Retrospectivos , Angiografía Coronaria/métodos , Estenosis Coronaria/diagnóstico por imagen , Estenosis Coronaria/fisiopatología , Anciano , Reproducibilidad de los Resultados , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Sensibilidad y Especificidad , Movimiento (Física)
11.
Oncol Lett ; 28(1): 297, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38751753

RESUMEN

There is a correlation between tumors and immunity with the degree of immune cell infiltration in tumors being closely related to tumor growth and progression. Therefore, the present study identified immune-related prognostic genes and evaluated the immune infiltration level in lung adenocarcinoma (LUAD). This study performed Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and Gene Set Enrichment Analysis (GSEA) enrichment analyses on differential immune-associated genes. A risk model was created and validated using six immune-related prognostic genes. Reverse transcription-quantitative PCR was used to assess the prognostic gene expression in non-small cell lung cancer cells. Immune cell infiltration in LUAD was analyzed using the CIBERSORT method. Single sample GSEA was used to compare Tumor Immune Dysfunction and Exclusion (TIDE) scores between high and low-risk groups and to assess the activation of thirteen immune-related pathways. Multifactor Cox proportional hazards model analysis identified six prognostic risk genes (S100A16, FURIN, FGF2, LGR4, TNFRSF11A and VIPR1) to construct a risk model. The survival and receiver operating characteristic curves indicated that patients with higher risk scores had lower overall survival rates. The expression levels of prognostic genes S100A16, FURIN, LGR4, TNFRSF11A and VIPR1 were significantly increased in LUAD. B cells naive, plasma cells, T cells CD4 memory activated, T cells follicular helper, T cells regulatory, NK cells activated, macrophages M1, macrophages M2, and Dendritic cells resting cells showed elevated expression in LUAD. The prognostic genes were differentially associated with individual immune cells. Immune-related function scores, such as those for antigen presenting cell (APC) co-stimulation, APC co-inhibition, check-point, Cytolytic-activity, chemokine receptor, parainflammation, major histocompatibility complex-class-I, type-I-IFN-reponse and T-cell-co-inhibition, were higher in the high-risk group compared with the low-risk group. Furthermore, the TIDE score of the high-risk group was significantly lower than the low-risk group. This immune-related gene prognostic model has the potential to predict the prognosis of LUAD patients, supporting the development of a personalized clinical diagnosis and treatment plan.

12.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 275-281, 2024 Mar 15.
Artículo en Chino | MEDLINE | ID: mdl-38557380

RESUMEN

OBJECTIVES: To investigate the nutritional status of children with cystic fibrosis (CF) and understand the correlation between malnutrition and clinical characteristics as well as lung function. METHODS: A retrospective analysis was performed on clinical data of CF children admitted from January 2016 to June 2023. Clinical characteristics of CF children with different nutritional statuses were compared, and the correlation between malnutrition and lung function was analyzed. RESULTS: A total of 52 CF children were included, comprising 25 boys (48%) and 27 girls (52%), aged between 7 months and 17 years. Respiratory symptoms were the predominant clinical manifestations (96%, 50/52). The prevalence of malnutrition was 65% (34/52), with moderate/severe malnutrition being the most common (65%, 22/34). The malnutrition group had a longer duration of illness, higher proportion of digestive system symptoms, and lower levels of serum albumin (P<0.05). Pulmonary function parameters, including forced expiratory volume in one second as a percentage of the predicted value, ratio of forced expiratory volume in one second to forced vital capacity, forced expiratory flow at 25% of forced vital capacity exhaled, forced expiratory flow at 50% of forced vital capacity exhaled, forced expiratory flow at 75% of forced vital capacity exhaled, and maximum mid-expiratory flow as a percentage of the predicted value, were lower in the malnutrition group compared to the normal nutrition group (P<0.05). Correlation analysis showed body mass index Z-score was positively correlated with the above six pulmonary function parameters (P<0.05). CONCLUSIONS: The prevalence of malnutrition is high in CF children and is associated with decreased lung function. CF children with higher body mass index have better lung function. Therefore, screening and evaluation of nutritional status as well as appropriate nutritional intervention should be emphasized in CF children.


Asunto(s)
Fibrosis Quística , Desnutrición , Niño , Masculino , Femenino , Humanos , Lactante , Estado Nutricional , Estudios Retrospectivos , Fibrosis Quística/complicaciones , Pulmón , Volumen Espiratorio Forzado , Desnutrición/etiología , Desnutrición/complicaciones
13.
BMC Ophthalmol ; 24(1): 203, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38684941

RESUMEN

BACKGROUND: This study aims to investigate the morphologic features of the crystalline lens in Primary Angle Closure Disease (PACD) patients with zonular instability during cataract surgery using the swept-source CASIA 2 Anterior Segment-Optical Coherence Tomography (AS-OCT) system. METHODS: A total of 398 eyes (125 PACD eyes with zonular instability, 133 PACD eyes with zonular stability, and 140 cataract patient controls) of 398 patients who underwent cataract surgery combined or not glaucoma surgery between January 2021 and January 2023 were enrolled. The crystalline lens parameters were measured by CASIA2 AS-OCT. Then, logistic regression was performed to evaluate the risk factors associated with zonular instability. RESULTS: The results revealed that PACD eyes had a more anterior lens equator position, a steeper anterior curvature of lens, shorter Axial Length (AL), shallower Anterior Chamber Distance (ACD), higher Lens Vault (LV) and thicker Lens Thickness (LT), when compared to eyes in the cataract control group. Furthermore, PACD eyes in the zonular instability group had steeper front R, front Rs and Front Rf, flatter back Rf, thicker lens anterior part thickness, higher lens anterior-to-posterior part thickness ratios, shallower ACD, and greater LV, when compared to PACD eyes with zonular stability. The logistic regression analysis, which was adjusted for age and gender, revealed that zonular instability was positively correlated with anterior part thickness, lens anterior-to-posterior part thickness ratio, and LV, but was negatively correlated with lens anterior radius and ACD. CONCLUSION: Steeper anterior curvature, increased lens anterior part thickness, higher anterior-to-posterior part thickness ratio, shallower ACD, and greater LV are the anatomic features of PACD eyes associated with zonular instability.


Asunto(s)
Segmento Anterior del Ojo , Glaucoma de Ángulo Cerrado , Cristalino , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Glaucoma de Ángulo Cerrado/fisiopatología , Glaucoma de Ángulo Cerrado/diagnóstico , Femenino , Masculino , Anciano , Persona de Mediana Edad , Segmento Anterior del Ojo/diagnóstico por imagen , Segmento Anterior del Ojo/patología , Cristalino/diagnóstico por imagen , Cristalino/patología , Estudios Retrospectivos , Presión Intraocular/fisiología , Agudeza Visual/fisiología
14.
Sci Adv ; 10(16): eadi1782, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38630819

RESUMEN

Mutant isocitrate dehydrogenases (IDHs) produce R-2-hydroxyglutarate (R-2HG), which inhibits the growth of most acute myeloid leukemia (AML) cells. Here, we showed that necroptosis, a form of programmed cell death, contributed to the antileukemia activity of R-2HG. Mechanistically, R-2HG competitively inhibited the activity of lysine demethylase 2B (KDM2B), an α-ketoglutarate-dependent dioxygenase. KDM2B inhibition increased histone 3 lysine 4 trimethylation levels and promoted the expression of receptor-interacting protein kinase 1 (RIPK1), which consequently caused necroptosis in AML cells. The expression of RIPK3 was silenced because of DNA methylation in IDH-mutant (mIDH) AML cells, resulting in R-2HG resistance. Decitabine up-regulated RIPK3 expression and repaired endogenous R-2HG-induced necroptosis pathway in mIDH AML cells. Together, R-2HG induced RIPK1-dependent necroptosis via KDM2B inhibition in AML cells. The loss of RIPK3 protected mIDH AML cells from necroptosis. Restoring RIPK3 expression to exert R-2HG's intrinsic antileukemia effect will be a potential therapeutic strategy in patients with AML.


Asunto(s)
Glutaratos , Leucemia Mieloide Aguda , Lisina , Humanos , Necroptosis , Leucemia Mieloide Aguda/tratamiento farmacológico , Apoptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
15.
Molecules ; 29(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611749

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with a high degree of malignancy and poor prognosis. Tumor-associated macrophages (TAMs) have been identified as significant contributors to the growth and metastasis of TNBC through the secretion of various growth factors and chemokines. Salvianolic acid A (SAA) has been shown to have anti-cancer activities. However, the potential activity of SAA on re-polarized TAMs remains unclear. As there is a correlation between the TAMs and TNBC, this study investigates the effect of SAA on TAMs in the TNBC microenvironment. For that purpose, M2 TAM polarization was induced by two kinds of TNBC-conditioned medium (TNBC-TCM) in the absence or presence of SAA. The gene and protein expression of TAM markers were analyzed by qPCR, FCM, IF, ELISA, and Western blot. The protein expression levels of ERK and p-ERK in M2-like TAMs were analyzed by Western blot. The migration and invasion properties of M2-like TAMs were analyzed by Transwell assays. Here, we demonstrated that SAA increased the expression levels of CD86, IL-1ß, and iNOS in M2-like TAMs and, conversely, decreased the expression levels of Arg-1 and CD206. Moreover, SAA inhibited the migration and invasion properties of M2-like TAMs effectively and decreased the protein expression of TGF-ß1 and p-ERK in a concentration-dependent manner, as well as TGF-ß1 gene expression and secretion. Our current findings for the first time demonstrated that SAA inhibits macrophage polarization to M2-like TAMs by inhibiting the ERK pathway and promotes M2-like TAM re-polarization to the M1 TAMs, which may exert its anti-tumor effect by regulating M1/M2 TAM polarization. These findings highlight SAA as a potential regulator of M2 TAMs and the possibility of utilizing SAA to reprogram M2 TAMs offers promising insights for the clinical management of TNBC.


Asunto(s)
Ácidos Cafeicos , Lactatos , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Factor de Crecimiento Transformador beta1 , Microambiente Tumoral , Macrófagos Asociados a Tumores
17.
Circ Cardiovasc Imaging ; 17(4): e016155, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626098

RESUMEN

BACKGROUND: Computed tomography (CT) fractional flow reserve (FFR)-derived functional SYNTAX score (FSSCT-FFR) is a valuable method for guiding treatment strategy in patients with multivessel coronary artery disease. Dynamic CT myocardial perfusion imaging (CT-MPI) demonstrates higher diagnostic accuracy than CT-FFR in identifying hemodynamically significant coronary artery disease. We aimed to evaluate the feasibility of CT-MPI-derived FSS (FSSCT-MPI) with reference to invasive FSS. METHODS: In this retrospective study, patients with multivessel coronary artery disease who underwent dynamic CT-MPI+ coronary CT angiography and invasive coronary angiography or FFR within 4 weeks were consecutively included. Invasive (FSSinvasive) and noninvasive FSS (FSSCT-MPI and FSSCT-FFR) were calculated by an online calculator, which assigned points to lesions with hemodynamic significance (defined as FFRinvasive ≤0.80, invasive coronary angiography diameter stenosis ≥90%, CT-FFR ≤0.80, and myocardial ischemia on CT-MPI). Weighted κ value and net reclassification index were calculated to determine the consistency and incremental discriminatory power of FSSCT-MPI. Receiver operating characteristic curve analysis was used for the comparison of FSSCT-MPI and FSSCT-FFR in detecting intermediate- to high-risk patients. RESULTS: A total of 119 patients (96 men; 64.6±10.6 years) with 305 obstructive lesions were included. The average FSSCT-MPI, FSSCT-FFR, and FSSinvasive were 15.58±13.03, 16.18±13.30, and 13.11±12.22, respectively. The agreement on risk classification based on the FSSCT-MPI tertiles was good (weighted κ, 0.808). With reference to FSSinvasive, FSSCT-MPI correctly reclassified 27 (22.7%) patients from the intermediate- to high SYNTAX score group to the low-score group (net reclassification index, 0.30; P<0.001). In patients with severe calcification, FSSCT-MPI had better diagnostic value than FSSCT-FFR in detecting intermediate- to high-risk patients when compared with FSSinvasive (area under the curve, 0.976 versus 0.884; P<0.001). CONCLUSIONS: Noninvasive FSS derived from CT-MPI is feasible and has strong concordance with FSSinvasive. It allows accurate categorization of FSS in patients with multivessel coronary artery disease, in particular with severe calcification.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Imagen de Perfusión Miocárdica , Masculino , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Imagen de Perfusión Miocárdica/métodos , Estudios Retrospectivos , Estudios de Factibilidad , Tomografía Computarizada por Rayos X/métodos , Angiografía Coronaria/métodos , Angiografía por Tomografía Computarizada/métodos , Valor Predictivo de las Pruebas
18.
Skelet Muscle ; 14(1): 5, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454511

RESUMEN

BACKGROUND: Neurovascular cells have wide-ranging implications on skeletal muscle biology regulating myogenesis, maturation, and regeneration. Although several in vitro studies have investigated how motor neurons and endothelial cells interact with skeletal myocytes independently, there is limited knowledge about the combined effect of neural and vascular cells on muscle maturation and development. METHODS: Here, we report a triculture system comprising human-induced pluripotent stem cell (iPSC)-derived skeletal myocytes, human iPSC-derived motor neurons, and primary human endothelial cells maintained under controlled media conditions. Briefly, iPSCs were differentiated to generate skeletal muscle progenitor cells (SMPCs). These SMPCs were seeded at a density of 5 × 104 cells/well in 12-well plates and allowed to differentiate for 7 days before adding iPSC-derived motor neurons at a concentration of 0.5 × 104 cells/well. The neuromuscular coculture was maintained for another 7 days in coculture media before addition of primary human umbilical vein endothelial cells (HUVEC) also at 0.5 × 104 cells/well. The triculture was maintained for another 7 days in triculture media comprising equal portions of muscle differentiation media, coculture media, and vascular media. Extensive morphological, genetic, and molecular characterization was performed to understand the combined and individual effects of neural and vascular cells on skeletal muscle maturation. RESULTS: We observed that motor neurons independently promoted myofiber fusion, upregulated neuromuscular junction genes, and maintained a molecular niche supportive of muscle maturation. Endothelial cells independently did not support myofiber fusion and downregulated expression of LRP4 but did promote expression of type II specific myosin isoforms. However, neurovascular cells in combination exhibited additive increases in myofiber fusion and length, enhanced production of Agrin, along with upregulation of several key genes like MUSK, RAPSYN, DOK-7, and SLC2A4. Interestingly, more divergent effects were observed in expression of genes like MYH8, MYH1, MYH2, MYH4, and LRP4 and secretion of key molecular factors like amphiregulin and IGFBP-4. CONCLUSIONS: Neurovascular cells when cultured in combination with skeletal myocytes promoted myocyte fusion with concomitant increase in expression of various neuromuscular genes. This triculture system may be used to gain a deeper understanding of the effects of the neurovascular niche on skeletal muscle biology and pathophysiology.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Endoteliales , Células Cultivadas , Fibras Musculares Esqueléticas/metabolismo , Neuronas Motoras , Diferenciación Celular/fisiología
19.
J Nutr Biochem ; 129: 109627, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38555074

RESUMEN

Obesity is strongly associated with disturbances of vitamin D (VD) metabolites in the animal models. However, the related epidemiological evidence is still controversial, especially the different degrees of obesity children. Hence, in this present representative case-control study, 106 obesity school-age children aged 7-12 years were included and divided into different subgroups as degree I (the age- and sex-specific BMI≥95th percentile, n=45), II (BMI ≥120% percentile, n=34) and III (BMI ≥140% percentile, n=27) obesity groups across the ranges of body mass index (BMI). While the age- and sex-matched subjects without obesity were as the control group. Notably, it was significantly different of body composition, anthropological and clinical characteristics among the above four subgroups with the dose-response relationships (P<.05). Moreover, comparing with the control group, the serum VD concentrations were higher, VD metabolites like 25(OH)D, 25(OH)D3 and 1,25(OH)2D, and related hydroxylases as CYP27A1, CYP2R1 and CYP27B1 were lower in the degree I, II, and III obesity subgroups (P<.05), which were more disorder with the anthropological and clinical characteristics as the obesity was worsen in a BMI-independent manner (P<.05). However, there was a significant increase of CYP27B1 in the degree III obesity group than those in the degree I and II obesity subgroups. Furthermore, the methylation patterns on the genome-wide (Methylation/Hydroxymethylation) and VD metabolism genes (CYP27A1, CYP2R1 and CYP27B1) were negatively correlated with the worse obesity and their related expressions (P<.05). In summary, these results indicated that obesity could affect the homeostasis of VD metabolism related genes such as CYP27A1, CYP2R1, CYP27B1 and etc through abnormal DNA methylation, resulting in the disorders of VD related metabolites to decrease VD bio-availability with the BMI-independent manner. In turn, the lower levels of VD metabolites would affect the liver function to exacerbate the progression of obesity, as the Degree II and III obesity subgroups.


Asunto(s)
Índice de Masa Corporal , Metilación de ADN , Obesidad Infantil , Vitamina D , Humanos , Niño , Masculino , Femenino , Vitamina D/sangre , Vitamina D/análogos & derivados , Estudios de Casos y Controles , Obesidad Infantil/genética , Obesidad Infantil/metabolismo , Obesidad Infantil/complicaciones , Colestanotriol 26-Monooxigenasa/genética , Colestanotriol 26-Monooxigenasa/metabolismo , Familia 2 del Citocromo P450/genética , Familia 2 del Citocromo P450/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Deficiencia de Vitamina D/genética , Obesidad/genética , Obesidad/metabolismo , Enfermedades Metabólicas/genética
20.
Mol Cell ; 84(7): 1321-1337.e11, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38513662

RESUMEN

Intracellular Mg2+ (iMg2+) is bound with phosphometabolites, nucleic acids, and proteins in eukaryotes. Little is known about the intracellular compartmentalization and molecular details of Mg2+ transport into/from cellular organelles such as the endoplasmic reticulum (ER). We found that the ER is a major iMg2+ compartment refilled by a largely uncharacterized ER-localized protein, TMEM94. Conventional and AlphaFold2 predictions suggest that ERMA (TMEM94) is a multi-pass transmembrane protein with large cytosolic headpiece actuator, nucleotide, and phosphorylation domains, analogous to P-type ATPases. However, ERMA uniquely combines a P-type ATPase domain and a GMN motif for ERMg2+ uptake. Experiments reveal that a tyrosine residue is crucial for Mg2+ binding and activity in a mechanism conserved in both prokaryotic (mgtB and mgtA) and eukaryotic Mg2+ ATPases. Cardiac dysfunction by haploinsufficiency, abnormal Ca2+ cycling in mouse Erma+/- cardiomyocytes, and ERMA mRNA silencing in human iPSC-cardiomyocytes collectively define ERMA as an essential component of ERMg2+ uptake in eukaryotes.


Asunto(s)
Adenosina Trifosfatasas , ATPasas Tipo P , Animales , Ratones , Humanos , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Transporte Biológico , ATPasas Tipo P/metabolismo , Calcio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA