Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Int Ophthalmol ; 44(1): 314, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965086

RESUMEN

BACKGROUND: Oxidative stress-induced retinal pigment epithelium (RPE) cell damage is a major factor in age-related macular degeneration (AMD). Vitamin D3 (VD3) is a powerful antioxidant and it has been suggested to have anti-aging properties and potential for treating AMD. This study aimed to investigate the effect of VD3 on RPE cell oxidative apoptosis of RPE cells in order to provide experimental evidence for the treatment of AMD. METHODS: Human retinal pigment epithelial cell 19 (ARPE-19) cells were divided into four groups: blank group (untreated), model group (incubated in medium with 400 µmol/L H2O2 for 1 h), VD3 group (incubated in medium with 100 µmol/L VD3 for 24 h), and treatment group (incubated in medium with 400 µmol/L H2O2 for 1 h and 100 µmol/L VD3 for 24 h). Cell viability, cell senescence, ROS content, expression levels of vitamin D specific receptors, Akt, Sirt1, NAMPT, and JNK mRNA expression levels, SOD activity, and MDA, GSH, and GPX levels were measured. RESULTS: We first established an ARPE-19 cell stress model with H2O2. Our control experiment showed that VD3 treatment had no significant effect on ARPE-19 cell viability within 6-48 h. Treating the stressed ARPE-19 cells with VD3 showed mixed results; caspase-3 expression was decreased, Bcl-2 expression was increased, MDA level of ARPE-19 cells was decreased, GSH-PX, GPX and SOD levels were increased, the relative mRNA expression levels of Akt, Sirt1, NAMPT were increased (P < 0.05), and the relative mRNA expression level of JNK was decreased (P < 0.05). CONCLUSION: VD3 can potentially slow the development of AMD.


Asunto(s)
Apoptosis , Supervivencia Celular , Estrés Oxidativo , Epitelio Pigmentado de la Retina , Humanos , Estrés Oxidativo/efectos de los fármacos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Degeneración Macular/metabolismo , Vitaminas/farmacología , Vitamina D/farmacología , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Cultivadas , Sirtuina 1/metabolismo , Sirtuina 1/genética , Senescencia Celular/efectos de los fármacos , Línea Celular , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/toxicidad
2.
Chem Sci ; 15(24): 9112-9119, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38903225

RESUMEN

The weak spin-orbit coupling (SOC) in metal-free organic molecules poses a challenge in achieving phosphorescence emission. To attain pure phosphorescence in RTP organic emitters, a promising molecular design concept has been proposed. This involves incorporating n → π* transitions and leveraging the heavy atomic effect within the spin-orbit charge transfer-induced intersystem crossing (SOCT-ISC) mechanism of bipolar molecules. Following this design concept, two bipolar metal-free organic molecules (PhSeB and PhSeDB) with donor-acceptor (D-A) and acceptor-donor-acceptor (A-D-A) configurations have been synthesized. When the molecular configuration changes from D-A to A-D-A, PhSeDB exhibits stronger electron coupling and n → π* transitions, which can further enhance the spin-orbit coupling (SOC) together with the heave atom effect from the selenium atom. By the advanced synergism among enhanced n → π* transitions, heavy atom effect and magnified electron coupling to efficiently promote phosphorescence emission, PhSeDB can achieve pure RTP emission in both the solution and doped solid film. Thanks to the higher spin-orbit coupling matrix elements (SOCMEs) for T1 ↔ S0, PhSeDB attains the highest phosphorescence quantum yield (ca. 0.78) among all the RTP organic emitters reported. Consequently, the purely organic phosphorescent light-emitting diodes (POPLEDs) based on PhSeDB achieve the highest external quantum efficiencies of 18.2% and luminance of 3000 cd m-2. These encouraging results underscore the significant potential of this innovative molecular design concept for highly efficient POPLEDs.

3.
Transl Oncol ; 46: 102026, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850800

RESUMEN

Thymosin beta 10 (TMSB10) overexpression is a general characteristic in human carcinogenesis. It is involved in the malignant process of generating multiple cancers. However, there are only a few reports about TMSB10 in colorectal cancer (CRC) and the mechanism of its carcinogenetic effect is still poorly understood. The present study intends to clarify the biological roles and carcinogenic mechanism of TMSB10 in CRC and to explore the possibility whether TMSB10 might be useful as a non-invasive serum tumor biomarker in detecting CRC. Immunohistochemical results showed that TMSB10 protein expression in CRC tissues was generally higher than that in adjacent tissues, and the TMSB10 contents in serum of CRC patients was significantly elevated compared to that of healthy controls. Knockdown-TMSB10 increased apoptosis and induced S-cell cycle arrest, and finally inhibited cell proliferation in vitro and in vivo. Transcriptome sequencing and western blotting analysis revealed that knockdown-TMSB10 increased phosphorylation of p38 and activated the p38 pathway that blocked cell cycle and promoted apoptosis. Taken together, our study indicated that TMSB10 could serve as a minimally invasive serum tumor marker in detecting CRC. At the same time it demonstrates an effective regulatory capacity of TMSB10 on cell proliferation of CRC, suggesting that TMSB10 and downstream effector molecules regulated by TMSB10 could further be applied as an appealing target in clinical post-surgery chemotherapy.

4.
Aging (Albany NY) ; 16(11): 9625-9648, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38829771

RESUMEN

Currently, the repair of large bone defects still faces numerous challenges, with the most crucial being the lack of large bone grafts with good osteogenic properties. In this study, a novel bone repair implant (degradable porous zinc scaffold/BF Exo composite implant) was developed by utilizing laser melting rapid prototyping 3D printing technology to fabricate a porous zinc scaffold, combining it under vacuum conditions with highly bioactive serum exosomes (BF EXO) and Poloxamer 407 thermosensitive hydrogel. The electron microscope revealed the presence of tea saucer-shaped exosomes with a double-layered membrane structure, ranging in diameter from 30-150 nm, with an average size of 86.3 nm and a concentration of 3.28E+09 particles/mL. In vitro experiments demonstrated that the zinc scaffold displayed no significant cytotoxicity, and loading exosomes enhanced the zinc scaffold's ability to promote osteogenic cell activity while inhibiting osteoclast activity. In vivo experiments on rabbits indicated that the hepatic and renal toxicity of the zinc scaffold decreased over time, and the loading of exosomes alleviated the hepatic and renal toxic effects of the zinc scaffold. Throughout various stages of repairing radial bone defects in rabbits, loading exosomes reinforced the zinc scaffold's capacity to enhance osteogenic cell activity, suppress osteoclast activity, and promote angiogenesis. This effect may be attributed to BF Exo's regulation of p38/STAT1 signaling. This study signifies that the combined treatment of degradable porous zinc scaffolds and BF Exo is an effective and biocompatible strategy for bone defect repair therapy.


Asunto(s)
Regeneración Ósea , Exosomas , Osteogénesis , Impresión Tridimensional , Radio (Anatomía) , Andamios del Tejido , Zinc , Animales , Exosomas/metabolismo , Exosomas/trasplante , Conejos , Radio (Anatomía)/cirugía , Osteogénesis/efectos de los fármacos , Porosidad , Regeneración Ósea/efectos de los fármacos , Masculino
5.
Chem Sci ; 15(22): 8506-8513, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38846396

RESUMEN

The modulation of emission color is one of the most critical topics in the research field of organic light-emitting diodes (OLEDs). Currently, only two ways are commonly used to tune the emission colors of OLEDs: one is to painstakingly synthesize different emitters with diverse molecular structures, the other is to precisely control the degree of aggregation or doping concentration of one emitter. To develop a simpler and less costly method, herein we demonstrate a new strategy in which the emission colors of OLEDs can be continuously changed with UV light during the device fabrication process. The proof of concept is established by a chromene-based Ir(iii) complex, which shows bright green emission and yellow emission before and after UV irradiation, respectively. Consequently, under different durations of UV irradiation, the resulting Ir(iii) complex is successfully used as the emitter to gradually tune the emission colors of related solution-processed OLEDs from green to yellow. Furthermore, the electroluminescent efficiencies of these devices are unaffected or even increased during this process. Therefore, this work demonstrates a distinctive point of view and approach for modulating the emission colors of OLEDs, which may prove great inspiration for the fabrication of multi-colored OLEDs with only one emitter.

6.
Phytochemistry ; 223: 114120, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705265

RESUMEN

Eleven previously undescribed sesquiterpenoids (8-18), one undescribed jasmonic acid derivative (35) and 28 known compounds were isolated from the leaves of Artemisia stolonifera. Undescribed compounds with their absolute configurations were determined by extensive spectroscopic analysis, single-crystal X-ray diffraction and ECD calculation. Compound 8 was identified as a rare sesquiterpenoid featuring a rearranged 5/8 bicyclic ring system, whereas compound 17 was found to be an unprecedented monocyclic sesquiterpenoid with methyl rearrangement. Evaluation of biological activity showed that compounds 1-5 and 7 displayed cytotoxicity against six tumor cells. In the meantime, compounds 11, 12, 18 and 35 exhibited inhibitory effects against LPS-stimulated NO production in RAW 264.7 macrophage cells and reduced the transcription of IL-6 and IL-1ß in a dose-dependent manner at 25, 50 and 100 µM. Moreover, the anti-inflammatory-based network pharmacology and molecular docking analyses revealed potential target proteins of 11, 12, 18 and 35.


Asunto(s)
Antiinflamatorios , Artemisia , Ciclopentanos , Óxido Nítrico , Oxilipinas , Sesquiterpenos , Artemisia/química , Ratones , Oxilipinas/farmacología , Oxilipinas/química , Oxilipinas/aislamiento & purificación , Animales , Células RAW 264.7 , Sesquiterpenos/química , Sesquiterpenos/farmacología , Sesquiterpenos/aislamiento & purificación , Ciclopentanos/química , Ciclopentanos/farmacología , Ciclopentanos/aislamiento & purificación , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Humanos , Relación Dosis-Respuesta a Droga , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Hojas de la Planta/química , Ensayos de Selección de Medicamentos Antitumorales
7.
Org Lett ; 26(21): 4475-4479, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38767291

RESUMEN

Genome mining of Emericella sp. XL-029 achieved a new type E sesterterpene synthase, EmES, which affored a novel bipolyhydroindenol sesterterpene, emerindanol A. Heterologous coexpression with the upstream P450 oxidase revealed C-4 hydroxylated product, emerindanol B. Notably, emerindanols A and B represented the first sesterterpenes featuring a unique 5/6-6/5 coupled ring system. EmES was postulated to initiate through C1-IV-V pathway and convert the fused ring intermediate into the final coupled ring product through a spiro skeleton.


Asunto(s)
Sesterterpenos , Sesterterpenos/química , Estructura Molecular , Emericella/química
8.
ACS Omega ; 9(13): 15311-15319, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585103

RESUMEN

The primary limitations of the quantitative analysis of thermally labile halogenated compounds by traditional gas chromatography (GC) are the inadequacy of identifying the insufficiently volatile impurity (often with a high boiling point) and the difficulty in obtaining a standard substance with a reliable standardized assay. Taking the 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one (DMDO-Cl, 1) as an example, we reported a triphenylmethanamino-derivatization method to overcome the challenges of the assay determination of such species. During the quantification of 1, the presence of GC-undetectable polymeric impurity 10 poses a critical challenge in assessing the material quality. Moreover, the standard substance of 1 is not available on the market due to its inherent instability during storage and handling, further complicating the quantitative analysis. In this work, a precolumn HPLC-UV derivatization method based on triphenylmethanamino-alkylation was developed to quantitatively analyze 1. The resulting derivative 2 exhibits excellent crystallinity and superior physical and chemical stability and possesses effective chromophores for UV detection. The conversion from analyte 1 to derivative 2 demonstrates desirable reactivity and purity, facilitating quantitative analysis using the external standard method. The chemical derivatization-chromatographic detection method was optimized and validated, demonstrating its high specificity, good linearity, precision, accuracy, and stability. This method offers a valuable alternative to the general quantitative NMR (qNMR) detection technique, which exhibits reduced specificity in the presence of increased levels of impurities in compound 1.

9.
Heliyon ; 10(8): e29567, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38681656

RESUMEN

XIAP, or the X-linked Inhibitor of Apoptosis Protein, is the most extensively studied member within the IAP gene family. It possesses the capability to impede apoptosis through direct inhibition of caspase activity. Various kinds of cancers overexpress XIAP to enable cancer cells to avoid apoptosis. Consequently, the inhibition of XIAP holds significant clinical implications for the development of anti-tumor medications and the treatment of cancer. In this study, sterigmatocystin, a natural compound obtained from the genus asperigillus, was demonstrated to be able to induce apoptotic and autophagic cell death in liver cancer cells. Mechanistically, sterigmatocystin induces apoptosis by downregulation of XIAP expression. Additionally, sterigmatocystin treatment induces cell cycle arrest, blocks cell proliferation, and slows down colony formation in liver cancer cells. Importantly, sterigmatocystin exhibits a remarkable therapeutic effect in a nude mice model. Our findings revealed a novel mechanism through which sterigmatocystin induces apoptotic and autophagic cell death of liver cancer cells by suppressing XIAP expression, this offers a promising therapeutic approach for treating liver cancer patients.

10.
Phys Rev Lett ; 132(11): 116301, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563917

RESUMEN

Recent theoretical and experimental research suggests that θ-TaN is a semimetal with high thermal conductivity (κ), primarily due to the contribution of phonons (κ_{ph}). By using first-principles calculations, we show a nonmonotonic pressure dependence of the κ of θ-TaN. κ_{ph} first increases until it reaches a maximum at around 60 GPa, and then decreases. This anomalous behavior is a consequence of the competing pressure responses of phonon-phonon and phonon-electron interactions, in contrast to the known materials BAs and BP, where the nonmonotonic pressure dependence is caused by the interplay between different phonon-phonon scattering channels. Although TaN has phonon dispersion features similar to BAs at ambient pressure, its response to pressure is different and an overall stiffening of the phonon branches takes place. Consequently, the relevant phonon-phonon scattering weakens as pressure increases. However, the increased electronic density of states near the Fermi level, and specifically the emergence of additional pockets of the Fermi surface at the high-symmetry L point in the Brillouin zone, leads to a substantial increase in phonon-electron scattering at high pressures, driving a decrease in κ_{ph}. At intermediate pressures (∼20-70 GPa), the κ of TaN surpasses that of BAs. Our Letter provides deeper insight into phonon transport in semimetals and metals where phonon-electron scattering is relevant.

11.
Front Plant Sci ; 15: 1291630, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606074

RESUMEN

Climate change, characterized by rising atmospheric CO2 levels and temperatures, poses significant challenges to global crop production. Sweet sorghum, a prominent C4 cereal extensively grown in arid areas, emerges as a promising candidate for sustainable bioenergy production. This study investigated the responses of photosynthesis and leaf-scale water use efficiency (WUE) to varying light intensity (I) in sweet sorghum under different temperature and CO2 conditions. Comparative analyses were conducted between the A n-I, g s-I, T r-I, WUEi-I, and WUEinst-I models proposed by Ye et al. and the widely utilized the non-rectangular hyperbolic (NRH) model for fitting light response curves. The Ye's models effectively replicated the light response curves of sweet sorghum, accurately capturing the diminishing intrinsic WUE (WUEi) and instantaneous WUE (WUEinst) trends with increasing I. The fitted maximum values of A n, g s, T r, WUEi, and WUEinst and their saturation light intensities closely matched observations, unlike the NRH model. Despite the NRH model demonstrating high R 2 values for A n-I, g s-I, and T r-I modelling, it returned the maximum values significantly deviating from observed values and failed to generate saturation light intensities. It also inadequately represented WUE responses to I, overestimating WUE. Across different leaf temperatures, A n, g s, and T r of sweet sorghum displayed comparable light response patterns. Elevated temperatures increased maximum A n, g s, and T r but consistently declined maximum WUEi and WUEinst. However, WUEinst declined more sharply due to the disproportionate transpiration increase over carbon assimilation. Critically, sweet sorghum A n saturated at current atmospheric CO2 levels, with no significant gains under 550 µmol mol-1. Instead, stomatal closure enhanced WUE under elevated CO2 by coordinated g s and T r reductions rather than improved carbon assimilation. Nonetheless, this response diminished under simultaneously high temperature, suggesting intricate interplay between CO2 and temperature in modulating plant responses. These findings provide valuable insights into photosynthetic dynamics of sweet sorghum, aiding predictions of yield and optimization of cultivation practices. Moreover, our methodology serves as a valuable reference for evaluating leaf photosynthesis and WUE dynamics in diverse plant species.

12.
Cell ; 187(11): 2855-2874.e19, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657603

RESUMEN

Progress in understanding early human development has been impeded by the scarcity of reference datasets from natural embryos, particularly those with spatial information during crucial stages like gastrulation. We conducted high-resolution spatial transcriptomics profiling on 38,562 spots from 62 transverse sections of an intact Carnegie stage (CS) 8 human embryo. From this spatial transcriptomic dataset, we constructed a 3D model of the CS8 embryo, in which a range of cell subtypes are identified, based on gene expression patterns and positional register, along the anterior-posterior, medial-lateral, and dorsal-ventral axis in the embryo. We further characterized the lineage trajectories of embryonic and extra-embryonic tissues and associated regulons and the regionalization of signaling centers and signaling activities that underpin lineage progression and tissue patterning during gastrulation. Collectively, the findings of this study provide insights into gastrulation and post-gastrulation development of the human embryo.


Asunto(s)
Embrión de Mamíferos , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Imagenología Tridimensional , Humanos , Embrión de Mamíferos/metabolismo , Transcriptoma/genética , Gástrula/metabolismo , Gástrula/embriología , Transducción de Señal , Linaje de la Célula , Perfilación de la Expresión Génica , Tipificación del Cuerpo/genética
13.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612874

RESUMEN

The Hippo pathway plays crucial roles in governing various biological processes during tumorigenesis and metastasis. Within this pathway, upstream signaling stimuli activate a core kinase cascade, involving MST1/2 and LATS1/2, that subsequently phosphorylates and inhibits the transcriptional co-activators YAP and its paralog TAZ. This inhibition modulates the transcriptional regulation of downstream target genes, impacting cell proliferation, migration, and death. Despite the acknowledged significance of protein kinases in the Hippo pathway, the regulatory influence of protein phosphatases remains largely unexplored. In this study, we conducted the first gain-of-functional screen for protein tyrosine phosphatases (PTPs) regulating the Hippo pathway. Utilizing a LATS kinase biosensor (LATS-BS), a YAP/TAZ activity reporter (STBS-Luc), and a comprehensive PTP library, we identified numerous novel PTPs that play regulatory roles in the Hippo pathway. Subsequent experiments validated PTPN12, a master regulator of oncogenic receptor tyrosine kinases (RTKs), as a previously unrecognized negative regulator of the Hippo pathway effectors, oncogenic YAP/TAZ, influencing breast cancer cell proliferation and migration. In summary, our findings offer valuable insights into the roles of PTPs in the Hippo signaling pathway, significantly contributing to our understanding of breast cancer biology and potential therapeutic strategies.


Asunto(s)
Neoplasias , Monoéster Fosfórico Hidrolasas , Vía de Señalización Hippo , Genes Reguladores , Transducción de Señal , Factores de Transcripción
14.
Front Plant Sci ; 15: 1332875, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476692

RESUMEN

The models used to describe the light response of electron transport rate in photosynthesis play a crucial role in determining two key parameters i.e., the maximum electron transport rate (J max) and the saturation light intensity (I sat). However, not all models accurately fit J-I curves, and determine the values of J max and I sat. Here, three models, namely the double exponential (DE) model, the non-rectangular hyperbolic (NRH) model, and a mechanistic model developed by one of the coauthors (Z-P Ye) and his coworkers (referred to as the mechanistic model), were compared in terms of their ability to fit J-I curves and estimate J max and I sat. Here, we apply these three models to a series of previously collected Chl a fluorescence data from seven photosynthetic organisms, grown under different conditions. Our results show that the mechanistic model performed well in describing the J-I curves, regardless of whether photoinhibition/dynamic down-regulation of photosystem II (PSII) occurs. Moreover, both J max and I sat estimated by this model are in very good agreement with the measured data. On the contrary, although the DE model simulates quite well the J-I curve for the species studied, it significantly overestimates both the J max of Amaranthus hypochondriacus and the I sat of Microcystis aeruginosa grown under NH4 +-N supply. More importantly, the light intensity required to achieve the potential maximum of J (J s) estimated by this model exceeds the unexpected high value of 105 µmol photons m-2 s-1 for Triticum aestivum and A. hypochondriacus. The NRH model fails to characterize the J-I curves with dynamic down-regulation/photoinhibition for Abies alba, Oryza sativa and M. aeruginosa. In addition, this model also significantly overestimates the values of J max for T. aestivum at 21% O2 and A. hypochondriacus grown under normal condition, and significantly underestimates the values of J max for M. aeruginosa grown under NO3 -N supply. Our study provides evidence that the 'mechanistic model' is much more suitable than both the DE and NRH models in fitting the J-I curves and in estimating the photosynthetic parameters. This is a powerful tool for studying light harvesting properties and the dynamic down-regulation of PSII/photoinhibition.

15.
Front Microbiol ; 15: 1365356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468853

RESUMEN

Introduction: Ticks are important blood-sucking ectoparasites that can transmit various pathogens, posing significant threats to the wellbeing of humans and livestock. Dabieshan tick virus (DBTV) was initially discovered in 2015 in Haemaphysalis longicornis ticks from the Dabieshan mountain region in Hubei Province, China. In recent years, DBTV has been discovered in various regions of China, including Shandong, Zhejiang, Liaoning, Hubei, Yunnan, and Guizhou Provinces. However, the researches on tick-borne transmission of DBTV are scarce. Methods: This study utilized the small RNA sequencing (sRNA-seq) method to identify tick-associated viruses in ticks collected from Chengde in Hebei Province and Yongcheng in Henan Province, leading to the discovery of a new DBTV strain in Hebei. The complete coding genome of DBTV Hebei strain was obtained through RNA-seq and Sanger sequencing. Furthermore, the transmission experiment of DBTV in H. longicornis was examined in laboratory for the first time. Results: DBTV was detected in newly molted adult H. longicornis ticks collected in Chengde, Hebei Province. Additionally, DBTV was also detected in both unfed nymphs and engorged females of H. longicornis collected from Chengde, with a positive rate of 20% and 56.25%, respectively. The complete coding genome of DBTV (OP682840 and OP716696) were obtained, and phylogenetic analysis revealed that the DBTV Hebei strain clustered with previously reported DBTV strains. Furthermore, this virus was observed in engorged females, eggs, and larvae of the subsequent generation. Discussion: It is necessary to expand the scope of DBTV investigation, particularly in northern China. This study demonstrated that DBTV can be transmitted from engorged females to larvae of the next generation. Moreover, the detection of DBTV in unfed nymphs and adults (which moulted from engorged nymphs) collected from the filed of Chengde suggests that H. longicornis serves as a potential transmission host and reservoir for DBTV through transstadial and transovarial transmission. However, there remains a lack of research on the isolation and pathogenicity of DBTV, highlighting the need for further studies to mitigate potential harm to the health of animals and humans.

16.
Pest Manag Sci ; 80(8): 3957-3966, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38521986

RESUMEN

BACKGROUND: Ticks, which are obligate blood-feeding parasites, transmit a wide range of pathogens during their hematophagic process. Certain enzymes and macromolecules play a crucial role in inhibition of several tick physiological processes, including digestion and reproduction. In the present study, genes encoding type 2 cystatin were cloned and characterized from Haemaphysalis doenitzi, and the potential role of cystatin in tick control was further assessed. RESULTS: Two cystatin genes, HDcyst-1 and HDcyst-2, were successfully cloned from the tick H. doenitzi. Their open reading frames are 390 and 426 base pairs, and the number of coding amino acids are 129 and 141, respectively. In the midgut, salivary glands, Malpighian tubules and ovaries of ticks, the relative expression of HDcyst-1 was higher in the midgut and Malpighian tubules, and HDcyst-2 was higher in the salivary glands of H. doenitzi, respectively. Lipopolysaccharide (LPS) injection and low-temperature stress elevated cystatin expression in ticks. Enzyme-linked immunosorbent assay showed that both rHDcyst-1 and rHDcyst-2 protein vaccines increased antibody levels in immunized rabbits. A vaccination trial in rabbits infected with H. doenitzi showed that both recombinant cystatin proteins significantly reduced tick engorgement weights and egg mass weight, in particular, rHDcyst-1 significantly prolonged tick engorgement time by 1 day and reduced egg hatching rates by 16.9%. In total, rHDcyst-1 and rHDcyst-2 protein vaccinations provided 64.1% and 51.8% protection to adult female ticks, respectively. CONCLUSION: This is the first report on the immunological characterization of the cystatin protein and sequencing of the cystatin gene in H. doenitzi. Cystatin proteins are promising antigens that have the potential to be used as vaccines for infestation of H. doenitzi control. © 2024 Society of Chemical Industry.


Asunto(s)
Proteínas de Artrópodos , Frío , Cistatinas , Ixodidae , Vacunas , Animales , Cistatinas/genética , Conejos , Femenino , Vacunas/inmunología , Ixodidae/inmunología , Ixodidae/fisiología , Ixodidae/genética , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/inmunología , Estrés Fisiológico , Lipopolisacáridos/farmacología , Secuencia de Aminoácidos
17.
Water Res ; 254: 121377, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38452524

RESUMEN

Cosmetics and personal care products containing titanium dioxide nanoparticles (TiO2 NPs) may enter aquatic environments, where the surface coatings of TiO2 NPs may change with aging due to environmental factors such as light, and potentially affect their bioaccumulation and toxicity. This study examined how aging impacted the physicochemical properties of three commercially available TiO2 NPs and subsequent influence on the bioaccumulation and toxicity of copper (Cu) in Daphnia magna (D. magna). We demonstrated that aging significantly affected the hydrophobicity of TiO2 NPs, which affected their binding to water molecules and adsorption of Cu. Changes of bioaccumulation of TiO2 NPs and Cu in D. magna ultimately affected the activities of intracellular antioxidant enzymes such as SOD, CAT, GSH-Px, and the transmembrane protein Na+/K+-ATPase. Molecular docking calculations demonstrated that changes of activities of these biological enzymes were due to the interaction between TiO2 NPs, Cu, and amino acid residues near the sites with the lowest binding energy and active center of the enzyme. Such effect was closely related to the hydrophobicity of TiO2 NPs. Our study demonstrated the close relationship between surface properties of TiO2 NPs and their biological effects, providing important evidence for understanding the behavior of nanomaterials in aquatic environments.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Daphnia magna , Simulación del Acoplamiento Molecular , Daphnia , Contaminantes Químicos del Agua/química , Nanopartículas/toxicidad , Titanio/química , Envejecimiento , Propiedades de Superficie
18.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338806

RESUMEN

Solid tumours can universally evade contact inhibition of proliferation (CIP), a mechanism halting cell proliferation when cell-cell contact occurs. Merlin, an ERM-like protein, crucially regulates CIP and is frequently deactivated in various cancers, indicating its significance as a tumour suppressor in cancer biology. Despite extensive investigations into Merlin's role in cancer, its lack of intrinsic catalytic activity and frequent conformation changes have made it notoriously challenging to study. To address this challenge, we harnessed innovative luciferase technologies to create and validate a NanoBiT split-luciferase biosensor system in which Merlin is cloned between two split components (LgBiT and SmBiT) of NanoLuc luciferase. This system enables precise quantification of Merlin's conformation and activity both in vitro and within living cells. This biosensor significantly enhances the study of Merlin's molecular functions, serving as a potent tool for exploring its contributions to CIP and tumorigenesis.


Asunto(s)
Técnicas Biosensibles , Neoplasias , Neurofibromina 2 , Humanos , Transformación Celular Neoplásica , Genes Supresores de Tumor , Luciferasas , Neurofibromina 2/química , Neurofibromina 2/metabolismo , Técnicas Biosensibles/métodos
19.
Sci Bull (Beijing) ; 69(8): 1061-1070, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38302331

RESUMEN

Nanosized Pt catalysts are the catalyst-of-choice for proton exchange membrane fuel cell (PEMFC) anode, but are limited by their extreme sensitivity to CO in parts per million (ppm) level, thereby making the use of ultrapure H2 a prerequisite to ensure acceptable performance. Herein, we confront the CO poisoning issue by bringing the Ir/Rh single atom sites to synergistically working with their metallic counterparts. In presence of 1000 ppm CO, the catalyst represents not only undisturbed H2 oxidation reaction (HOR) catalytic behavior in electrochemical cell, but also unparalleled peak power density at 643 mW cm-2 in single cell, 27-fold in mass activity of the best PtRu/C catalysts available. Pre-poisoning experiments and surface-enhanced Raman scattering spectroscopy (SERS) and calculation results in combine suggest the presence of adjacent Ir/Rh single atom sites (SASs) to the nanoparticles (NPs) as the origin for this prominent catalytic behavior. The single sites not only exhibit superb CO oxidation performance by themselves, but can also scavenge the CO adsorbed on approximated NPs via supplying reactive OH* species. We open up a new route here to conquer the formidable CO poisoning issue through single atom and nanoparticle synergistic catalysis, and pave the way towards a more robust PEMFC future.

20.
Nat Prod Res ; : 1-10, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299875

RESUMEN

Three undescribed indole alkaloids, fusarindoles F and G (1 and 2), and chlamydosporin B (3), together with five known compounds (4-8) were isolated from Robillarda sessilis. Their structures were elucidated based on NMR, UV, HRESIMS, and ECD calculation. Fusarindole F (1) own unusual asymmetric bis-indole structure. Compounds 5, 6, 7 exhibited moderate antibacterial activity against methicillin-resistant Staphylococcus aureus with a MIC value of 12.5 µg/mL. According to molecular docking experiment, the target proteins of compound 7 against methicillin-resistant S. aureus may be ELANE, MAOB and STAT3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA