Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 556
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
ACS Sens ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046797

RESUMEN

A Pt nanoparticle-immobilized WO3 material is a promising candidate for catalytic reactions, and the surface and electronic structure can strongly affect the performance. However, the effect of the intrinsic oxygen vacancy of WO3 on the d-band structure of Pt and the synergistic effect of Pt and the WO3 matrix on reaction performance are still ambiguous, which greatly hinders the design of advanced materials. Herein, Pt-decorated WO3 nanosheets with different electronic metal-support interactions are successfully prepared by finely tuning the oxygen vacancy structure of WO3 nanosheets. Notably, Pt-modified WO3 nanosheets annealed at 400 °C exhibit excellent benzene series (BTEX) sensing performance (S = 377.33, 365.21, 348.45, and 319.23 for 50 ppm ethylbenzene, benzene, toluene, and xylene, respectively, at 140 °C), fast response and recovery dynamics (10/7 s), excellent reliability (σ = 0.14), and sensing stability (φ = 0.08%). Detailed structural characterization and DFT results reveal that interfacial Ptδ+-Ov-W5+ sites are recognized as the active sites, and the oxygen vacancies of the WO3 matrix can significantly affect the d-band structure of Pt nanoparticles. Notably, Pt/WO3-400 with improved surface oxygen mobility and medium electronic metal-support interaction facilitates the activation and desorption of BTEX, which contributes to the highly efficient BTEX sensing performance. Our work provides a new insight for the design of high-performance surface reaction materials for advanced applications.

2.
Small ; : e2403743, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973074

RESUMEN

Photocatalytic hydrogen peroxide production from water and oxygen offers a clean and sustainable alternative to the conventional energy-intensive anthraquinone oxidation method. Compared to powdered covalent triazine frameworks (CTFs), the film morphology of CTFs provides better connectivity in 2D, yielding several advantages: more efficient connections between active sites, reduced electron-hole pair recombination, increased resistance to superoxide radical induced corrosion, and decreased light scattering. Leveraging these benefits, it has incorporated dual active sites for both the oxygen reduction reaction (ORR) and the water oxidation reaction (WOR) into a CTF film system. This dual-active CTF film demonstrated an exceptional hydrogen peroxide production rate of 19 460 µmol h⁻¹ m⁻2 after 1 h and 17 830 µmol h⁻¹ m⁻2 after 5 h under visible light irradiation (≥420 nm) without the need for sacrificial agents.

3.
Adv Sci (Weinh) ; : e2403358, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973351

RESUMEN

Conductive polymer hydrogels exhibit unique electrical, electrochemical, and mechanical properties, making them highly competitive electrode materials for stretchable high-capacity energy storage devices for cutting-edge wearable electronics. However, it remains extremely challenging to simultaneously achieve large mechanical stretchability, high electrical conductivity, and excellent electrochemical properties in conductive polymer hydrogels because introducing soft insulating networks for improving stretchability inevitably deteriorates the connectivity of rigid conductive domain and decreases the conductivity and electrochemical activity. This work proposes a distinct confinement self-assembly and multiple crosslinking strategy to develop a new type of organic-inorganic hybrid conductive hydrogels with biphase interpenetrating cross-linked networks. The hydrogels simultaneously exhibit high conductivity (2000 S m-1), large stretchability (200%), and high electrochemical activity, outperforming existing conductive hydrogels. The inherent mechanisms for the unparalleled comprehensive performances are thoroughly investigated. Elastic all-hydrogel supercapacitors are prepared based on the hydrogels, showing high specific capacitance (212.5 mF cm-2), excellent energy density (18.89 µWh cm-2), and large deformability. Moreover, flexible self-powered luminescent integrated systems are constructed based on the supercapacitors, which can spontaneously shine anytime and anywhere without extra power. This work provides new insights and feasible avenues for developing high-performance stretchable electrode materials and energy storage devices for wearable electronics.

4.
J Med Chem ; 67(14): 12261-12313, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38959455

RESUMEN

The pyrazolo[1,5-a]pyrimidine scaffold is a promising scaffold to develop potent and selective CSNK2 inhibitors with antiviral activity against ß-coronaviruses. Herein, we describe the discovery of a 1,2,4-triazole group to substitute a key amide group for CSNK2 binding present in many potent pyrazolo[1,5-a]pyrimidine inhibitors. Crystallographic evidence demonstrates that the 1,2,4-triazole replaces the amide in forming key hydrogen bonds with Lys68 and a water molecule buried in the ATP-binding pocket. This isosteric replacement improves potency and metabolic stability at a cost of solubility. Optimization for potency, solubility, and metabolic stability led to the discovery of the potent and selective CSNK2 inhibitor 53. Despite excellent in vitro metabolic stability, rapid decline in plasma concentration of 53 in vivo was observed and may be attributed to lung accumulation, although in vivo pharmacological effect was not observed. Further optimization of this novel chemotype may validate CSNK2 as an antiviral target in vivo.


Asunto(s)
Antivirales , Quinasa de la Caseína II , Pirimidinas , Triazoles , Replicación Viral , Triazoles/farmacología , Triazoles/química , Triazoles/síntesis química , Pirimidinas/farmacología , Pirimidinas/química , Pirimidinas/síntesis química , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Animales , Humanos , Replicación Viral/efectos de los fármacos , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/metabolismo , Pirazoles/farmacología , Pirazoles/química , Pirazoles/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Amidas/química , Amidas/farmacología , Amidas/síntesis química , Relación Estructura-Actividad , Ratones , Ratas , SARS-CoV-2/efectos de los fármacos , Descubrimiento de Drogas , Masculino
5.
BMJ Open ; 14(7): e084827, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032931

RESUMEN

OBJECTIVE: This study aimed to compare the effects of patient-controlled intravenous analgesia (PCIA) with and without low-basal infusion on postoperative hypoxaemia. DESIGN: A randomised parallel-group non-inferiority trial. SETTING: The trial was conducted at a grade-A tertiary hospital from December 2021 to August 2022. PARTICIPANTS: 160 adults undergoing gastrointestinal tumour surgery and receiving postoperative PCIA. INTERVENTIONS: Participants randomly received a low-basal (0.1 mg/hour of hydromorphone) or no-basal infusion PCIA for postoperative 48 hours. PRIMARY AND SECONDARY OUTCOME MEASURES: Primary outcome was area under curve (AUC) per hour for hypoxaemia, defined as pulse oxygen saturation (SpO2) <95%. Secondary outcomes included: AUC per hour at SpO2<90% and <85%, hydromorphone consumption, ambulation time and analgesic outcomes up to 48 hours after surgery. RESULTS: Among 160 randomised patients, 159 completed the trial. An intention-to-treat analysis showed that AUC per hour (SpO2<95%) was greater in the low-basal infusion group compared with the no-basal infusion group, with a median difference of 0.097 (95% CI 0.001 to 0.245). Non-inferiority (margin: ratio of means (ROM) of 1.25) was not confirmed since the ROM between the two groups was 2.146 (95% CI 2.138 to 2.155). Hydromorphone consumption was higher in the low-basal group than in the no-basal group (median: 5.2 mg versus 1.6 mg, p<0.001). Meanwhile, there were no differences in the AUC values at the other two hypoxaemia thresholds, in ambulation time, or pain scores between the groups. CONCLUSIONS: Among the patients receiving hydromorphone PCIA after gastrointestinal tumour resection, low-basal infusion was inferior to no-basal infusion PCIA for postoperative hypoxaemia at SpO2<95% up to 48 hours after surgery. TRIAL REGISTRATION NUMBER: ChiCTR2100054317.


Asunto(s)
Analgesia Controlada por el Paciente , Analgésicos Opioides , Hidromorfona , Hipoxia , Dolor Postoperatorio , Humanos , Hidromorfona/administración & dosificación , Masculino , Femenino , Persona de Mediana Edad , Hipoxia/prevención & control , Hipoxia/etiología , Analgesia Controlada por el Paciente/métodos , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/uso terapéutico , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/prevención & control , Anciano , Infusiones Intravenosas , Neoplasias Gastrointestinales/cirugía , Neoplasias Gastrointestinales/complicaciones , Adulto
6.
J Sci Food Agric ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989609

RESUMEN

BACKGROUND: Algae oil has garnered widespread acclaim due as a result of its high purity of docosahexaenoic acid (DHA) and excellent safety profile. The present study aimed to develop stable nanoemulsions (NEs) systems containing DHA from algae oil through thermal sterilization by combining modified whey protein concentrate (WPC) with low methoxyl pectin (LMP), as well as to investigate the impact of LMP concentration on the thermal stability and the gastrointestinal delivery efficiency of DHA NEs. RESULTS: The addition of LMP enhanced the stability of the emulsion after sterilization, at the same time as improving the protective and sustained release effects of DHA in the gastrointestinal tract. Optimal effect was achieved at a LMP concentration of 1% (10 g kg-1 sample), the stability of the emulsion after centrifugation increased by 17.21 ± 5.65% compared to the group without LMP, and the loss of DHA after sterilization decreased by only 0.92 ± 0.09%. Furthermore, the addition of 1% LMP resulted in a substantial reduction in the release of fatty acids from the NEs after gastrointestinal digestion simulation, achieving the desired sustained-release effect. However, excessive addition of 2% (20 g kg-1 sample) LMP negatively impacted all aspects of the NEs system, primarily because of the occurrence of depletion effects. CONCLUSION: The construction of the LMP/WPC-NEs system is conducive to the protection of DHA in algae oil and its sustained-release in the gastrointestinal tract. The results of the present study can provide reference guidance for the application of algae oil NEs in the food field. © 2024 Society of Chemical Industry.

7.
Sci Rep ; 14(1): 16149, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997404

RESUMEN

The educational environment plays a vital role in the development of students who participate in athletic pursuits both in terms of their physical health and their ability to detect fatigue. As a result of recent advancements in deep learning and biosensors benefitting from edge computing resources, we are now able to monitor the physiological fatigue of students participating in sports in real time. These devices can then be used to analyze the data using contemporary technology. In this paper, we present an innovative deep learning framework for forecasting fatigue in athletic students following physical exercise. It addresses the issue of lack of precision computational models and extensive data analysis in current approaches to monitoring students' physical activity. In our study, we classified fatigue and non-fatigue based on photoplethysmography (PPG) signals. Several deep learning models are compared in the study. Using limited training data, determining the optimal parameters for PPG presents a significant challenge. For datasets containing many data points, several models were trained using PPG signals: a deep residual network convolutional neural network (ResNetCNN) ResNetCNN, an Xception architecture, a bidirectional long short-term memory (BILSTM), and a combination of these models. Training and testing datasets were assigned using a fivefold cross validation approach. Based on the testing dataset, the model demonstrated a proper classification accuracy of 91.8%.


Asunto(s)
Aprendizaje Profundo , Ejercicio Físico , Fatiga , Fotopletismografía , Humanos , Fatiga/diagnóstico , Fatiga/fisiopatología , Fotopletismografía/métodos , Ejercicio Físico/fisiología , Redes Neurales de la Computación , Masculino , Femenino , Procesamiento de Señales Asistido por Computador , Adulto Joven
8.
J Inflamm Res ; 17: 4791-4810, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39051052

RESUMEN

Background: Ischemic stroke (IS) is one of the leading causes of death and disability in the world, and alcohol consumption has been gaining attention as an independent risk factor for IS. Blood-brain barrier (BBB) dysfunction and neuroinflammation are the core of cerebral ischemia/reperfusion (I/R) injury, and pericytes play a crucial role in the structure and function. This study is to explore the effects of long-term alcohol consumption on IS and the potential mechanisms of pericytes. Methods: Rat models of long-term alcohol intake followed by transient middle cerebral artery occlusion stroke (EtOH+tMCAO) and cell models of oxygen-glucose deprivation/reoxygenation (OGD/R) with alcohol pre-treatment were constructed. Results: Worsened infarct volume, neurological scores, and BBB disruption were observed in the EtOH+tMCAO group compared with the tMCAO group, and immunofluorescence staining showed increased pericytes NLPR3 inflammasome activation at the ischemic penumbra. In vitro, pericyte mortality and LDH release elevated pre-treated by alcohol after OGD/R, and amplified expression of NLRP3 inflammasome was detected by Western blotting and qPCR. Alcohol pre-treatment activated the TLR4/NF-κB pathway, and transfecting pericytes with TLR4-small interfering RNA (siRNA) to block TLR4 signaling markedly restrained NLRP3 inflammasome over-activation. Injecting TAK-242 in rats alleviated neurological impairment caused by alcohol. Conclusion: Long-term alcohol pre-treatment aggravated ischemic stroke-induced brain damage by activating NLRP3 inflammasome via TLR4/NF-κB signaling pathway in the pericytes.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39054601

RESUMEN

Low-cost sodium-ion batteries have demonstrated great prospects in energy storage, among which layered transition metal oxides hold great potential as a cathode material. However, the notorious phase transition in layered cathode materials has greatly hampered their cycle life due to large volume changes upon desodiation/sodiation. In this study, by adopting an O3-type NaNi1/3Fe1/3Mn1/3O2 (NFM) with controlled synthesis temperatures, we have revealed that the grain size is closely related to its phase transition behaviors. The layered material with a smaller grain size and more distorted lattice tends to experience a shorter plateau of the O3-P3-O3 phase transitions during the charge/discharge process. Despite having a lower nominal discharge capacity without the phase transition plateau, its cycling stability increases from 77.4% to 96.2% after 100 cycles with greatly reduced intragranular cracks. The smaller grain size and lattice distortion act as a barrier that prevents the smooth layer from gliding upon sodium intercalation and deintercalation. This study focuses on the influence of grain size on battery cycle stability and provides a basis for future analysis of the structural instability of layered materials.

10.
J Colloid Interface Sci ; 675: 1-13, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38964120

RESUMEN

Birnessite-type MnO2 (δ-MnO2) exhibits great potential as a cathode material for aqueous zinc-ion batteries (AZIBs). However, the structural instability and sluggish reaction kinetics restrict its further application. Herein, a unique protons intercalation strategy was utilized to simultaneously modify the interlayer environment and transition metal layers of δ-MnO2. The intercalated protons directly form strong O  H bonds with the adjacent oxygens, while the increased H2O molecules also establish a hydrogen bond network (O  H···O) between H2O molecules or bond with adjacent oxygens. Based on the Grotthuss mechanism, these bondings ultimately enhance the stability of layered structures and facilitate the rapid diffusion of protons. Moreover, the introduction of protons induces numerous oxygen vacancies, reduces steric hindrance, and accelerates ion transport kinetics. Consequently, the protons intercalated δ-MnO2 (H-MnO2-x) demonstrates exceptional specific capacity of 401.7 mAh/g at 0.1 A/g and a fast-charging performance over 1000 cycles. Density functional theory analysis confirms the improved electronic conductivity and reduced diffusion energy barrier. Most importantly, electrochemical quartz crystal microbalance tests combining with ex-situ characterizations verify the inhibitory effect of the interlayer proton environment on basic zinc sulfate formation. Protons intercalation behavior provides a promising avenue for the development of MnO2 as well as other cathodes in AZIBs.

11.
ACS Appl Mater Interfaces ; 16(26): 34254-34265, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961577

RESUMEN

Hydroquinone (HQ) in wastewater is of great concern, as it is harmful to human health and threatens the ecological environment. However, the existing adsorbents have low adsorption capacity for HQ. To improve the removal of HQ, N,S-codoped activated carbon-ZIF-67 (NSAC-ZIF-67@C) was synthesized in this study by in situ growth of ZIF-67 on N,S-codoped activated carbon (NSAC) and carbonization. The influence of pH, contact time, and initial concentration on the adsorption behaviors of NSAC-ZIF-67@C on HQ were investigated. Owing to the synergistic effect of abundant active sites and well-developed pore structure, the NSAC-ZIF-67@C achieved a prominent adsorption capacity of 962 mg·g-1 and can still retain high adsorption performance after 5 cycles for HQ, which is superior to that of reported other adsorbents. HQ adsorption follows the pseudo-second-order kinetics model (R2 = 0.99999) and the Freundlich isotherm model. X-ray photoelectron spectroscopy (XPS) analysis before and after adsorption as well as density functional theory (DFT) calculation results showed that pyridinic-N-termini were conducive to the π-π interactions and hydrogen-bonding interactions. Therefore, the adsorption mechanisms of NSAC-ZIF-67@C on HQ involve pore filling, electrostatic attraction, π-π interaction, and hydrogen bonding. This study is expected to provide a reference for designing highly effective adsorbents for wastewater treatment.

12.
Alzheimers Dement ; 20(7): 4841-4853, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38860751

RESUMEN

INTRODUCTION: The cognitive impairment patterns and the association with Alzheimer's disease (AD) in mental disorders remain poorly understood. METHODS: We analyzed data from 486,297 UK Biobank participants, categorizing them by mental disorder history to identify the risk of AD and the cognitive impairment characteristics. Causation was further assessed using Mendelian randomization (MR). RESULTS: AD risk was higher in individuals with bipolar disorder (BD; hazard ratio [HR] = 2.37, P < 0.01) and major depressive disorder (MDD; HR = 1.63, P < 0.001). MR confirmed a causal link between BD and AD (ORIVW = 1.098), as well as obsessive-compulsive disorder (OCD) and AD (ORIVW = 1.050). Cognitive impairments varied, with BD and schizophrenia showing widespread deficits, and OCD affecting complex task performance. DISCUSSION: Observational study and MR provide consistent evidence that mental disorders are independent risk factors for AD. Mental disorders exhibit distinct cognitive impairment prior to dementia, indicating the potential different mechanisms in AD pathogenesis. Early detection of these impairments in mental disorders is crucial for AD prevention. HIGHLIGHTS: This is the most comprehensive study that investigates the risk and causal relationships between a history of mental disorders and the development of Alzheimer's disease (AD), alongside exploring the cognitive impairment characteristics associated with different mental disorders. Individuals with bipolar disorder (BD) exhibited the highest risk of developing AD (hazard ratio [HR] = 2.37, P < 0.01), followed by those with major depressive disorder (MDD; HR = 1.63, P < 0.001). Individuals with schizophrenia (SCZ) showed a borderline higher risk of AD (HR = 2.36, P = 0.056). Two-sample Mendelian randomization (MR) confirmed a causal association between BD and AD (ORIVW = 1.098, P < 0.05), as well as AD family history (proxy-AD, ORIVW = 1.098, P < 0.001), and kept significant after false discovery rate correction. MR also identified a nominal significant causal relationship between the obsessive-compulsive disorder (OCD) spectrum and AD (ORIVW = 1.050, P < 0.05). Individuals with SCZ, BD, and MDD exhibited impairments in multiple cognitive domains with distinct patterns, whereas those with OCD showed only slight declines in complex tasks.


Asunto(s)
Enfermedad de Alzheimer , Bancos de Muestras Biológicas , Disfunción Cognitiva , Análisis de la Aleatorización Mendeliana , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/epidemiología , Reino Unido/epidemiología , Femenino , Masculino , Disfunción Cognitiva/genética , Disfunción Cognitiva/epidemiología , Factores de Riesgo , Persona de Mediana Edad , Anciano , Trastornos Mentales/epidemiología , Trastornos Mentales/genética , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/epidemiología , Trastorno Bipolar/genética , Trastorno Bipolar/epidemiología , Esquizofrenia/genética , Esquizofrenia/epidemiología , Biobanco del Reino Unido
13.
Adv Sci (Weinh) ; : e2309889, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838096

RESUMEN

Spontaneous reversion from mild cognitive impairment (MCI) to normal cognition (NC) is little known. Based on the data of the Genetics of Personality Consortium and MCI participants from Alzheimer's Disease Neuroimaging Initiative, the authors investigate the effect of polygenic scores (PGS) for personality traits on the reversion of MCI to NC and its underlying neurobiology. PGS analysis reveals that PGS for conscientiousness (PGS-C) is a protective factor that supports the reversion from MCI to NC. Gene ontology enrichment analysis and tissue-specific enrichment analysis indicate that the protective effect of PGS-C may be attributed to affecting the glutamatergic synapses of subcortical structures, such as hippocampus, amygdala, nucleus accumbens, and caudate nucleus. The structural covariance network (SCN) analysis suggests that the left whole hippocampus and its subfields, and the left whole amygdala and its subnuclei show significantly stronger covariance with several high-cognition relevant brain regions in the MCI reverters compared to the stable MCI participants, which may help illustrate the underlying neural mechanism of the protective effect of PGS-C.

14.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 211-216, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836660

RESUMEN

This study investigated the regulatory impact of Toll-like receptor 4 (TLR4) gene on glioma cell proliferation and apoptosis, elucidating the molecular mechanisms underlying TLR4-induced growth inhibition in vivo. U-87MG-Sh and U-87MG-NC cells, with silenced TLR4 and negative control plasmid respectively, were established. Eighteen nude mice, divided into transfection, negative control, and blank control groups, were inoculated with corresponding cells. Over four weeks, the transfection group exhibited significantly reduced tumor growth rates, smaller mass and volume, and lower growth activity compared to controls. Histological analysis revealed sparse tumor cells, increased fibrous connective tissue, and slower angiogenesis in the transfection group. Flow cytometry demonstrated a lower proliferation index and increased G0/1 cell count in the transfection group. mRNA levels of TLR4, NF-κB, and CyclinD1 were significantly lower in the transfection group. TLR4 silencing correlated with U-87MG cell proliferation regulation, growth inhibition, NF-κB and CyclinD1 modulation, and induction of cell cycle arrest and apoptosis. These findings suggest TLR4 as a potential gene therapy target for glioma.


Asunto(s)
Apoptosis , Proliferación Celular , Ciclina D1 , Silenciador del Gen , Glioma , Ratones Desnudos , FN-kappa B , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Glioma/patología , Glioma/genética , Glioma/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Apoptosis/genética , Humanos , FN-kappa B/metabolismo , Ciclina D1/metabolismo , Ciclina D1/genética , Ratones , Puntos de Control del Ciclo Celular/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Regulación Neoplásica de la Expresión Génica , Ratones Endogámicos BALB C
15.
Chem Asian J ; : e202400482, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884566

RESUMEN

While numerous persulfate-based advanced oxidation processes (AOPs) have been studied based on fancy catalysts, the practical combination of Fe or Mn modified granular activated carbon (GAC) has seldom been investigated. The present study focused on a green and readily synthesized Fe-Mn bimetallic oxide doped GAC (Fe-Mn@GAC), to uncover its catalytic kinetics and mechanism when used in the peroxydisulfate (PDS)-based oxidation process for degrading Rhodamine B (RhB), a representative xenobiotic dye. The synthesized Fe-Mn@GAC was characterized by SEM-EDS, XRD, ICP-OES and XPS analyses to confirm its physicochemical properties. The catalytic kinetics of Fe-Mn@GAC+PDS system were evaluated under varying conditions, including PDS and catalyst dosages, solution pH, and the presence of anions. It was found Fe-Mn@GAC exhibited robust catalytic performance, being insensitive to a wide pH range from 3 to 11, and the presence of anions such as Cl-, SO4 2-, NO3 - and CO3 2-. The catalytic mechanism was investigated by EPR and quenching experiments. The results indicated the catalytic system processed a non-radical oxidation pathway, dominated by direct electron transfer between RhB and Fe-Mn@GAC, with singlet oxygen (1O2) playing a secondary role. The catalytic system also managed to maintain a RhB removal above 81 % in successive 10 cycles, and recover to 89.5 % after simple DI water rinse, showing great reusability. The catalytic system was further challenged by real dye-containing wastewater, achieving a decolorization rate of 84.5 %. This work not only provides fresh insight into the kinetics and mechanism of the Fe-Mn@GAC+PDS catalytic system, but also demonstrates its potential in the practical application in real dye-containing wastewater treatment.

16.
Comput Biol Med ; 178: 108785, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925089

RESUMEN

Variational Autoencoders (VAEs) are an efficient variational inference technique coupled with the generated network. Due to the uncertainty provided by variational inference, VAEs have been applied in medical image registration. However, a critical problem in VAEs is that the simple prior cannot provide suitable regularization, which leads to the mismatch between the variational posterior and prior. An optimal prior can close the gap between the evidence's real and variational posterior. In this paper, we propose a multi-stage VAE to learn the optimal prior, which is the aggregated posterior. A lightweight VAE is used to generate the aggregated posterior as a whole. It is an effective way to estimate the distribution of the high-dimensional aggregated posterior that commonly exists in medical image registration based on VAEs. A factorized telescoping classifier is trained to estimate the density ratio of a simple given prior and aggregated posterior, aiming to calculate the KL divergence between the variational and aggregated posterior more accurately. We analyze the KL divergence and find that the finer the factorization, the smaller the KL divergence is. However, too fine a partition is not conducive to registration accuracy. Moreover, the diagonal hypothesis of the variational posterior's covariance ignores the relationship between latent variables in image registration. To address this issue, we learn a covariance matrix with low-rank information to enable correlations with each dimension of the variational posterior. The covariance matrix is further used as a measure to reduce the uncertainty of deformation fields. Experimental results on four public medical image datasets demonstrate that our proposed method outperforms other methods in negative log-likelihood (NLL) and achieves better registration accuracy.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos
17.
Digit Health ; 10: 20552076241257447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840657

RESUMEN

Objective: This study aimed to compare the effectiveness of instant versus text messaging intervention (TMI) on antiretroviral therapy (ART) adherence among men who have sex with men (MSM) living with HIV. Methods: This study was conducted in an infectious disease hospital of Jinan, China from October 2020 to June 2021, using non-randomized concurrent controlled design to compare the effectiveness of instant messaging intervention (IMI) versus TMI. The intervention strategies (health messaging, medication reminder, and peer education) and contents were consistent between the two groups, and the difference was service delivery method and type of information. The primary outcome was the proportion of achieving optimal ART adherence, defined as never missing any doses and delayed any doses more than 1 hour. Results: A total of 217 participants (including 72 in TMI group and 145 in IMI group) were included in the study. The proportion of achieving optimal adherence was higher in IMI group than TMI group at the first follow-up (90.2% versus 77.6%, p = 0.021) and second follow-up (86.5% versus 76.6%, p = 0.083). The effect of IMI versus TMI on improving ART adherence was found not to be statistically significant (risk ratio (RR) = 1.93, 95% confidence interval (CI): 0.95-3.94) in complete-case analysis. However, when excluding participants who did not adhere to the interventions, a significant improvement was observed (RR = 2.77, 95%CI: 1.21-6.38). More participants in IMI group expressed highly rated satisfaction to the intervention services than those in TMI group (67.3% versus 50.0%). Conclusions: The IMI demonstrated superior efficacy over TMI in improving ART adherence and satisfaction with intervention services. It is suggested that future digital health interventions targeting ART adherence should prioritize instant messaging with multimedia information in areas with Internet access. Trial registration: The study was registered at the Chinese Clinical Trial Register (ChiCTR), with number [ChiCTR2000041282].

18.
BMC Geriatr ; 24(1): 541, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907227

RESUMEN

BACKGROUND: Emerging evidence suggests that alterations in BCAA metabolism may contribute to the pathogenesis of sarcopenia. However, the relationship between branched-chain amino acids (BCAAs) and sarcopenia is incompletely understood, and existing literature presents conflicting results. In this study, we conducted a community-based study involving > 100,000 United Kingdom adults to comprehensively explore the association between BCAAs and sarcopenia, and assess the potential role of muscle mass in mediating the relationship between BCAAs and muscle strength. METHODS: Multivariable linear regression analysis examined the relationship between circulating BCAAs and muscle mass/strength. Logistic regression analysis assessed the impact of circulating BCAAs and quartiles of BCAAs on sarcopenia risk. Subgroup analyses explored the variations in associations across age, and gender. Mediation analysis investigated the potential mediating effect of muscle mass on the BCAA-muscle strength relationship. RESULTS: Among 108,017 participants (mean age: 56.40 ± 8.09 years; 46.23% men), positive associations were observed between total BCAA, isoleucine, leucine, valine, and muscle mass (beta, 0.56-2.53; p < 0.05) and between total BCAA, leucine, valine, and muscle strength (beta, 0.91-3.44; p < 0.05). Logistic regression analysis revealed that increased circulating valine was associated with a 47% reduced sarcopenia risk (odds ratio = 0.53; 95% confidence interval = 0.3-0.94; p = 0.029). Subgroup analyses demonstrated strong associations between circulating BCAAs and muscle mass/strength in men and individuals aged ≥ 60 years. Mediation analysis suggested that muscle mass completely mediated the relationship between total BCAA, and valine levels and muscle strength, partially mediated the relationship between leucine levels and muscle strength, obscuring the true effect of isoleucine on muscle strength. CONCLUSION: This study suggested the potential benefits of BCAAs in preserving muscle mass/strength and highlighted muscle mass might be mediator of BCAA-muscle strength association. Our findings contribute new evidence for the clinical prevention and treatment of sarcopenia and related conditions involving muscle mass/strength loss.


Asunto(s)
Aminoácidos de Cadena Ramificada , Fuerza Muscular , Sarcopenia , Humanos , Sarcopenia/sangre , Sarcopenia/epidemiología , Masculino , Femenino , Estudios Transversales , Aminoácidos de Cadena Ramificada/sangre , Persona de Mediana Edad , Fuerza Muscular/fisiología , Anciano , Reino Unido/epidemiología , Músculo Esquelético/metabolismo , Adulto
19.
Sci Data ; 11(1): 453, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704376

RESUMEN

Water body (WB) extraction is the basic work of water resources management. Tibetan Plateau is one of the largest alpine lake systems in the world. However, research on the characteristics of water bodies (WBs) is mainly focused on large and medium WBs due to spatial resolution. This research presents a dataset containing a 2-m resolution map of WBs in 2020 based on Gaofen-1 data, and morphometric and landscape indices of WBs across the Tibetan Plateau. The Swin-UNet model is well performed with overall accuracy at 98%. The total area of WBs is 56354.6 km2 across Tibetan Plateau in 2020. The abundance compared with that from size-abundance relationship indicate WBs in the Tibetan Plateau conformed to the classic power scaling law. We evaluate the influence of spatial-resolution in WB extraction, which shows the dataset could be valuable to fill the gap of existing WBs map, especially for small waters. The dataset is valuable for revealing the spatial patterns of WBs, and understanding the impacts of climate change on water resources in Plateau.

20.
J Colloid Interface Sci ; 669: 466-476, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38723535

RESUMEN

Heterostructure engineering is considered a crucial strategy to modulate the intrinsic charge transfer behavior of materials, enhance catalytic activity, and optimize sulfur electrochemical processes. However, parsing the role of heterogeneous interface-structure-property relationships in heterostructures is still a key scientific issue to realize the efficient catalytic conversion of polysulfides. Based on this, molybdenum carbide (Mo2C) was successfully partial reduced to molybdenum metal (Mo) via a thermal reduction at high-temperature and the typical Mo-Mo2C-based Mott-Schottky heterostructures were simultaneously constructed, which realized the modulation of the electronic structure of Mo2C and optimized the conversion process of lithium polysulfides (LPS). Compared with single molybdenum carbide, the modulated molybdenum carbide acts as an electron donor with stronger Mo-S bonding strength as well as higher polysulfide adsorption energy, faster Li2S conversion kinetics, and greatly facilitates the adsorption → catalysis process of LPS. As a result, yolk-shell Mo-Mo2C heterostructure (C@Mo-Mo2C) exhibits excellent cycling performance as a sulfur host, with a discharge specific capacity of 488.41 mAh g-1 for C@Mo-Mo2C/S at 4 C and present an excellent high-rate cyclic performance accompanied by capacity decay rate of 0.08 % per cycle after 400 cycles at 2 C. Heterostructure-acting Mo2C electron distribution modulation engineering may contributes to the understanding of the structure-interface-property interaction law in heterostructures and further enables the efficient modulation of the chemical behavior of sulfur.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA