Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Thromb Res ; 219: 121-132, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36162255

RESUMEN

BACKGROUND: Deep vein thrombosis (DVT) with its major complication, pulmonary embolism, is a global health problem. Endothelial dysfunction is involved in the pathogenesis of DVT. We have previously demonstrated that endothelial specific deletion of Brahma-related gene 1 (BRG1) ameliorates atherosclerosis and aneurysm in animal models. Whether endothelial BRG1 contributes to DVT development remains undetermined. METHODS: DVT was induced in mice by ligation of inferior vena cava. Deletion of BRG1 in endothelial cells was achieved by crossing the Cdh5-ERT-Cre mice with the Brg1loxp/loxp mice. RESULTS: Here we report that compared to the wild type mice, BRG1 conditional knockout (CKO) mice displayed substantially decreased DVT susceptibility characterized by decreased weight and size of thrombus and reduced immune infiltration. In endothelial cells, thrombomodulin (THBD) expression was significantly decreased by TNF-α stimulation, while BRG1 knockdown or inhibition recovered THBD expression. Further analysis revealed that BRG1 deficiency decreased the CpG methylation levels of the THBD promoter induced by TNF-α. Mechanistically, BRG1 directly upregulated DNMT1 expression after TNF-α treatment in endothelial cells. More importantly, administration of a small-molecule BRG1 inhibitor PFI-3 displayed potent preventive and therapeutic potentials in the DVT model. CONCLUSIONS: Our findings implicate BRG1 as an important regulator of DVT pathogenesis likely through epigenetic regulation of THBD expression in endothelial cells and provide translational proof-of-concept for targeting BRG1 in DVT intervention.


Asunto(s)
Trombomodulina , Trombosis de la Vena , Animales , Ratones , Células Endoteliales/metabolismo , Epigénesis Genética , Represión Epigenética , Ratones Noqueados , Trombomodulina/genética , Trombomodulina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Trombosis de la Vena/patología
2.
Food Funct ; 11(10): 9157-9167, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33026384

RESUMEN

Oenothein B (OEB) has various biological functions, although few studies have focused on its effect on in vivo metabolic phenotypes. In the present study, the systematic antioxidant activity of OEB was evaluated both in vitro and in vivo, and the effect of OEB on metabolic pathways related to antioxidant capacity of Caenorhabditis elegans (C. elegans) was explored. Our findings indicate that OEB exhibits great antioxidant capacity and ability to scavenge free radicals and that OEB treatment can protect RAW 264.7 macrophages from oxidative damage by increasing superoxide dismutase (SOD) activity, catalase (CAT) activity and glutathione (GSH) content and the corresponding gene expression (sod2, cat, gpx1), while decreasing malonic dialdehyde (MDA) content. Moreover, OEB treatment significantly reduced ROS accumulation under oxidative stress conditions and increased glutathione peroxidase (GPx) activity and decreased MDA content in C. elegans. Metabolomics analysis revealed that sixteen out of forty-two significantly altered metabolites were selected as potential biomarkers related to alterations in the antioxidant status of worms, including metabolic pathways involved in amino acid metabolism, taurine and hypotaurine metabolism, lipid metabolism, and purine metabolism. Overall, our results provide new insights into the effects of OEB treatment on antioxidant capacity and metabolism that suggest that OEB could be a potentially good source of natural antioxidants.


Asunto(s)
Antioxidantes/farmacología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Taninos Hidrolizables/farmacología , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Catalasa/genética , Catalasa/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Malondialdehído/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Ratones , Estrés Oxidativo/efectos de los fármacos , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa GPX1
3.
Oncotarget ; 8(27): 44682-44693, 2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28591721

RESUMEN

Ginkgolide K (GK) belongs to the ginkgolide family of natural compounds found in Ginkgo biloba leaves, which have been used for centuries to treat cerebrovascular and cardiovascular diseases. We evaluated the protective effects of GK against neuronal apoptosis by assessing its ability to sustain mitochondrial integrity and function. Co-immunoprecipitation showed that Drp1 binding to GSK-3ß was increased after an oxygen-glucose deprivation/reperfusion (OGD/R) insult in cultured neuroblastoma cells. This induced Drp1 and GSK-3ß translocation to mitochondria and mitochondrial dysfunction, which was attenuated by GK. GK also reduced mitochondrial fission by increasing Drp1 phosphorylation at Ser637 and inhibiting mitochondrial Drp1 recruitment. In addition, GK exposure induced GSK-3ß phosphorylation at Ser9 and enhanced the interaction between adenine nucleotide translocator (ANT) and p-GSK-3ß. This interaction suppressed the interaction between ANT and cyclophilin D (CypD), which inhibited mitochondrial permeability transition pore (mPTP) opening. Similarly, suppression of mitochondrial fission by Mdivi-1 also inhibited GSK-3ß-induced mPTP opening. Treating mice with GK prevented GSK-3ß and Drp1 translocation to mitochondria and attenuated mitochondrial dysfunction after middle cerebral artery occlusion. We therefore propose that by inhibiting mitochondrial fission and attenuating mPTP opening, GK exerts neuroprotective effects that mitigate or prevent neuronal damage secondary to ischemic stroke.


Asunto(s)
Ginkgólidos/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Lactonas/farmacología , Dinámicas Mitocondriales/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/metabolismo , Animales , Apoptosis/efectos de los fármacos , Isquemia Encefálica/complicaciones , Isquemia Encefálica/metabolismo , Línea Celular , Citocromos c/metabolismo , Dinaminas/metabolismo , Ginkgólidos/química , Glucosa/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Lactonas/química , Masculino , Ratones , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Neuronas/patología , Fármacos Neuroprotectores/química , Oxígeno/metabolismo , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Accidente Cerebrovascular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA