RESUMEN
Ochratoxin A (OTA) poses significant risks to human health, being potentially nephrotoxic, carcinogenic, genotoxic, and immuno-toxic. In this work, we developed a dual-mode aptasensor for OTA analysis, integrating colorimetric, electrochemical, and smartphone-based detection. The bifunctional Fe-MIL-88 metal-organic framework, acting as both a nanozyme capable of catalyzing the 3,3',5,5'-tetramethylbenzidine substrate and an electrochemical signal amplifier, enabled OTA quantification through current response or changes in color and absorbance intensity. Besides, the spatial confinement effect enhances the local concentration of Fe-MIL-88 signal probes through rolling circle amplification reaction, thereby contributing to a substantial enhancement in sensitivity. The proposed technique is simple, disposable, highly sensitive and selective, enabling OTA detection in the range of 1 fg/mL to 250 ng/mL, with a limit of detection of 0.22 fg/mL (3σ rule). Furthermore, we successfully detected OTA in corn, wheat, and red wine samples, with results good concordance with those obtained using commercial enzyme-linked immunoassay kits.
RESUMEN
Herein, we present a novel methodology for synthesizing metal clusters or secondary building units (SBUs) that are subsequently employed to construct innovative metal-organic frameworks (MOFs) via dynamic covalent chemistry. Our approach entails extraction of SBUs from preformed MOFs through complete disassembly by clip-off chemistry. The initial MOF precursor is designed to incorporate the desired SBU, connected exclusively by cleavable linkers (in this study, with olefinic bonds). Cleavage of all the organic linkers (in this study, via ozonolysis under reductive conditions) liberates the SBUs functionalized with aldehyde groups. Once synthesized, these SBUs can be further reacted with amines in dynamic covalent chemistry to build new, rationally designed MOFs.
RESUMEN
With the restricted use of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), a number of alternatives to PFOS and PFOA have attracted great interest. Most of the alternatives are still characterized by persistence, bioaccumulation, and a variety of toxicity. Due to the production and use of these substances, they can be detected in the atmosphere, soil and water body. They affect human health through several exposure pathways and especially enter the gut by drinking water and eating food, which results in gut toxicity. In this review, we summarized the effects of PFOS, PFOA and 9 alternatives on pathological changes in the gut, the disruption of physical, chemical, biological and immune barriers of the intestine, and the gut-organ axis. This review provides a valuable understanding of the gut toxicity of PFOS, PFOA and their alternatives as well as the human health risks of emerging contaminants.
Asunto(s)
Ácidos Alcanesulfónicos , Caprilatos , Contaminantes Ambientales , Fluorocarburos , Fluorocarburos/toxicidad , Caprilatos/toxicidad , Ácidos Alcanesulfónicos/toxicidad , Humanos , Animales , Contaminantes Ambientales/toxicidad , Intestinos/efectos de los fármacosRESUMEN
The construction of efficient methods for highly sensitive and rapid detection of disease markers is essential for the early diagnosis of serious diseases. In this paper, taking advantage of the UiO-66-NH2 signal molecule in combination with a waste-free entropy-driven DNA machine, a novel homogeneous electrochemical ratiometric platform is developed to detect MircoRNA (miRNA). Metal-organic framework materials (UiO-66-NH2 MOF) and ferrocene were utilized as electrochemical signal tags and reference probes, respectively. The target-initiated waste-free three-dimensional (3D) entropy-driven DNA nanomachine is activated in the presence of miRNA, resulting in DNA-labeled-UiO-66-NH2 falling off from the electrode, leading to a decrease in the signal of UiO-66-NH2 at 0.83V. Our strategy can mitigate false positive responses induced by the DNA probes immobilized on electrodes in traditional distance-dependent signal adjustment ratiometric strategies. The proposed ratiometric platform demonstrates superior sensitivity (a detection limit of 9.8 fM), simplified operation, high selectivity, and high repeatability. The ratiometric biosensor is also applied to detect miRNA content in spiked serum samples.
Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Entropía , Estructuras Metalorgánicas , MicroARNs , MicroARNs/sangre , MicroARNs/análisis , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Humanos , Estructuras Metalorgánicas/química , ADN/química , Límite de Detección , Electrodos , Sondas de ADN/química , Sondas de ADN/genética , Compuestos Ferrosos/química , Metalocenos/químicaRESUMEN
Efficient detection of cancer-related nucleic acids is pivotal for early cancer diagnosis. This study introduces a target induced three-dimensional DNA biomimetic networks (B-3D Net)-based ratiometric fluorescence platform using manganese dioxide nanosheets (MnO2 NS)/o-phenylenediamine in combination with hybridization chain reaction to detect cancer-related genes (p53 gene). The incorporation of multiple signals within the B-3D networks can significantly enhance catalytic activity and amplify the output signals, enabling a high sensitivity. Compared with traditional ratio fluorescence platforms, there is no demand to synthesize fluorescent nanoprobes due to the in-situ formation of fluorescence species, which is simple and cost-effective. The corresponding assay demonstrated exceptional sensitivity (with a detection limit as low as 2 fM), selectivity, reproducibility, and accuracy, which mitigates disturbances caused by instrument errors, an inaccurate probe count, and the microenvironment. Furthermore, the ease and straightforwardness of discerning changes in fluorescent brightness and colour by the naked eye are evident. Using the relevant software, a linear relationship between fluorescent images using a smartphone and target concentration was obtained. Hence, the novel ratiometric sensing system will demonstrate new opportunities on determination of target DNA samples in complex biological environments.
Asunto(s)
Neoplasias , Óxidos , Compuestos de Manganeso , Colorantes Fluorescentes , Reproducibilidad de los Resultados , Biomimética , ADN/genética , Límite de DetecciónRESUMEN
MAIN CONCLUSION: A stable genetic transformation system for Erigeron breviscapus was developed. We cloned the EbYUC2 gene and genetically transformed it into Arabidopsis thaliana and E. breviscapus. The leaf number, YUC2 gene expression, and the endogenous auxin content in transgenic plants were significantly increased. Erigeron breviscapus is a prescription drug for the clinical treatment of cardiovascular and cerebrovascular diseases. The rosette leaves have the highest content of the major active compound scutellarin and are an important component in the yield of E. breviscapus. However, little is known about the genes related to the leaf number and flowering time of E. breviscapus. In our previous study, we identified three candidate genes related to the leaf number and flowering of E. breviscapus by combining resequencing data and genome-wide association study (GWAS). However, their specific functions remain to be characterized. In this study, we cloned and transformed the previously identified full-length EbYUC2 gene into Arabidopsis thaliana, developed the first stable genetic transformation system for E. breviscapus, and obtained the transgenic plants overexpressing EbYUC2. Compared with wild-type plants, the transgenic plants showed a significant increase in the number of leaves, which was correlated with the increased expression of EbYUC2. Consistently, the endogenous auxin content, particularly indole-3-acetic acid, in transgenic plants was also significantly increased. These results suggest that EbYUC2 may control the leaf number by regulating auxin biosynthesis, thereby laying a foundation for revealing the molecular mechanism governing the leaf number and flowering time of E. breviscapus.
Asunto(s)
Arabidopsis , Erigeron , Erigeron/genética , Arabidopsis/genética , Estudio de Asociación del Genoma Completo , Ácidos Indolacéticos , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Transformación GenéticaRESUMEN
Essential to many activities in our bodies, ascorbic acid is a small molecule essential to human health and physiological processes. In this study, a covalent organic framework called TpNda-COF was synthesized, which is composed of Tp (triformylephloroglucinol) and Nda (1, 5-napthalenediamine). This framework acts as a mimic enzyme and displays excellent oxidase-like activity when stimulated with purple light (at = 405 nm). It catalyzes the oxidation of 3,3',5,5'-tetramethylbenzydine (TMB) by generating O2- free radicals in the presence of oxygen. The resulting oxTMB shows a characteristic absorption peak at 652 nm. The biomimetic catalysis efficiency is significantly improved due to spatial restriction. By introducing ascorbic acid (AA) in the system, the blue oxTMB is reduced to colorless TMB. The decrease in absorption peak intensity can be quantitatively measured using a UV-Vis spectrophotometer, enabling the detection of AA. The sensing platform demonstrates excellent selectivity and sensitivity. It has a wide linear detection range from 5 µM to 50 µM, with a low detection limit of 1.44 µM. Advantages such as the easy control of light, high stability and efficient oxidation are provided by the TpNda-COF mimic oxidase. This innovative method presents a promising and cost-effective approach for rapid detection of ascorbic acid, with potential applications across various fields.
Asunto(s)
Estructuras Metalorgánicas , Humanos , Ácido Ascórbico , Colorimetría/métodos , Oxidorreductasas/metabolismo , Oxidación-ReducciónRESUMEN
Clip-off Chemistry is a synthetic strategy that our group previously developed to obtain new molecules and materials through selective cleavage of bonds. Herein, we report recent work to expand Clip-off Chemistry by introducing into it a retrosynthetic analysis step that, based on virtual extension of the products through cleavable bonds, enables one to define the required precursor materials. As proof-of-concept, we have validated our new approach by synthesising and characterising four aldehyde-functionalised Rh(II)-based complexes: a homoleptic cluster; a cis-disubstituted paddlewheel cluster; a macrocycle; and a crown.
RESUMEN
Ascorbic acid is a nutritional small molecule essential to human life activities and health, playing a vital role in many physiological processes. Fresh fruits and beverages can provide abundant AA to maintain human metabolic balance. Therefore, it is of great significance to develop a nanomaterial with superior nanozyme activity for rapid and convenient detection of ascorbic acid (AA) in fruits and beverages. Herein, a dual-signal sensing platform based on UV-vis absorption and test strip chromaticity for the quantitative determination of AA is presented. The sensing platform is based on the horseradish peroxidase-like activity of Ni3V2O8 nanoflowers, which catalyzes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by hydrogen peroxide to the blue oxide TMB (ox TMB). The ox TMB produced by the oxidation has a characteristic absorption peak at 650 nm. In the presence of AA, the blue ox TMB is reduced to colorless TMB, and the quantitative detection of AA can be achieved by detecting the decrease in intensity of the absorption peak by UV-Vis spectrophotometry. Under the optimal experimental conditions, the sensing platform exhibited excellent sensitivity and selectivity. A wide linear range of 0.1 µM to 40 µM with a detection limit of 0.032 µM was obtained. The linear equation is ΔA = 0.02513c + 0.1164 with a correlation coefficient of 0.9979. It showed excellent properties in the detection of real samples of fruit juices and beverages, meanwhile, a method for the rapid detection of AA based on chromaticity change of test strips was constructed with high sensitivity and convenience. The linearity range for the ascorbic acid was 1-50 µM with LOD of 0.42 µM. The developed sensing platform has the capability to quickly and accurately detect ascorbic acid (AA) in fresh fruits and beverages. This proposed method offers a new and promising approach for the rapid and cost-effective detection of ascorbic acid, which has a wide range of potential applications.
RESUMEN
Natural polysaccharides are abundant and renewable resource, but their applications are hampered by limited biological activity. Chemical modification can overcome these drawbacks by altering their structure. Three series of polysaccharide derivatives with coumarins were synthesized to obtain polysaccharide derivatives with enhanced biological activity. The biological activities were tested, including antioxidant property, antifungal property, and antibacterial property. Based on the results, the inhibitory properties of the coumarin-polysaccharide derivatives were significantly improved over the raw polysaccharide. The IC50 of the inhibition of DPPH, ABTSâ¢+, and superoxide (O2â¢-) radical-scavenging was 0.06-0.15 mg/mL, 2.3-15.9 µg/mL, and 0.03-0.25 mg/mL, respectively. Compared with the raw polysaccharides, coumarin- polysaccharide derivatives exhibited higher efficacy in inhibiting the growth of tested phytopathogens, showing inhibitory indices of 60.0-93.6 % at 1.0 mg/mL. Chitosan derivatives with methyl and chlorine (Compound 10B and 10C) exhibited significant antibacterial activity against S. aureus (MIC = 31.2 µg/mL), E. coli (MIC = 7.8 µg/mL), and V. harveyi (MIC = 15.6 µg/mL), respectively. The results of the cytotoxicity assay showed no observed cytotoxicity when the RAW 264.7 cells were incubated with the synthesized polysaccharide derivatives at the tested concentrations.
Asunto(s)
Cumarinas , Staphylococcus aureus , Cumarinas/farmacología , Cumarinas/química , Escherichia coli , Antioxidantes/farmacología , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/química , Polisacáridos/farmacologíaRESUMEN
In this study, a photoelectrochemical (PEC) sensor based on perylene diimide derivatives (PDIs) was developed for the ultrasensitive quantification of dopamine (DA). PDIs were able to form self-assembled semiconductor nanostructures by strong π-π stacking, suitable for photoactive substances. Moreover, the shape of the PDI significantly affected the PEC properties of these nanostructures. The results showed that amino PDI with two-dimensional (2D) wrinkled layered nanostructures exhibited superior PEC properties relative to one-dimensional (1D) nanorods and fiber-based nanostructures (methyl and carboxyl PDIs). Based on these results, a mechanism for PEC sensor action was then proposed. The presence of 2D amino-PDI resulted in accelerated charge separation and transport. Furthermore, dopamine acted as effective electron donor to cause an increase in photocurrent. The as-obtained sensor was then used to detect small molecules like DA. A blue light optimized sensor at an applied potential of 0.7 V showed a detection limit of 1.67 nM with a wide linear range of 5 nM to 10 µM. On the other hand, the sensor presented acceptable reliability in determining DA in real samples. A recovery rate between 97.99 and 101.0% was obtained. Overall, controlling the morphology of semiconductors can influence PEC performance, which is a useful finding for the future development of PEC sensors.
Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Perileno , Dopamina , Perileno/química , Reproducibilidad de los Resultados , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Límite de DetecciónRESUMEN
In this work, a highly sensitive colorimetric sensing platform was designed for the detection of trichlorfon based on inhibiting thiocholine (TCh)-induced redox reaction. 5,10,15,20-Tetracarboxyphenylporphyrin (TCPP) functionalized CuCo2O4 (TCPP-CuCo2O4) was synthesized to construct a colorimetric sensing platform for trichlorfon. In the presence of H2O2, TCPP-CuCo2O4 can oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue ox-TMB, accompanied by a strong absorption peak at 652 nm, while acetylcholinesterase (AChE) can specifically hydrolyze acetylthiocholine (ATCh) into TCh, which can reduce ox-TMB back into colorless TMB, resulting in a lower absorbance at 652 nm. Trichlorfon can irreversibly inhibit the activity of AChE and thus recover the absorption peak. Under the optimized conditions, detection of trichlorfon has a wide linear range of 40-4000 ng mL-1 with a linear correlation coefficient of 0.9904. The proposed method can be applied to the detection of trichlorfon in vegetables and has good application prospects.
Asunto(s)
Peroxidasa , Triclorfón , Acetilcolinesterasa , Colorimetría , Peróxido de Hidrógeno , Peroxidasas , ColorantesRESUMEN
The capture of carbon dioxide (CO2 ) from industrial process emissions is increasingly important for the mitigation and prevention of the disruptive effects of global warming. In this study, PAF (porous aromatic frameworks)-TPB(1,3,5-triphenylbenzene) and three-dimensional PAF-TPM (tetraphenylmethane) porphyrin-based aromatic porous materials were synthesized through the Scholl reaction. The CO2 and N2 adsorption isotherms at 273â K and 298â K were studied to determine the performance in carbon dioxide capture at flue gas conditions. There is a significant difference in the adsorption capacity of the two materials for CO2 and N2 , so they can be used for CO2 /N2 adsorption separation. PAF-TPM has better CO2 /N2 separation at low pressure (150â mbar), while PAF-TPB has the advantage of greater CO2 /N2 separation at high pressure (1â bar). It can be applied to CO2 adsorption separation at low and high pressure, respectively. In particular, PAF-TPB has a CO2 /N2 separation efficiency of up to 100.9 at 1â bar and 273â K. This work provides ideas for the design and synthesis of organic porous materials for the adsorption separation of CO2 and N2 .
RESUMEN
Isoreticular chemistry, in which the organic or inorganic moieties of reticular materials can be replaced without destroying their underlying nets, is a key concept for synthesizing new porous molecular materials and for tuning or functionalization of their pores. Here, we report that the rational cleavage of covalent bonds in a metal-organic framework (MOF) can trigger their isoreticular contraction, without the need for any additional organic linkers. We began by synthesizing two novel MOFs based on the MIL-142 family, (In)BCN-20B and (Sc)BCN-20C, which include cleavable as well as noncleavable organic linkers. Next, we selectively and quantitatively broke their cleavable linkers, demonstrating that various dynamic chemical and structural processes occur within these structures to drive the formation of isoreticular contracted MOFs. Thus, the contraction involves breaking of a covalent bond, subsequent breaking of a coordination bond, and finally, formation of a new coordination bond supported by structural behavior. Remarkably, given that the single-crystal character of the parent MOF is retained throughout the entire transformation, we were able to monitor the contraction by single-crystal X-ray diffraction.
RESUMEN
Metal-organic frameworks (MOFs) possess high CO2 adsorption properties and are considered to be a promising candidate for the electrochemical carbon dioxide reduction reaction (eCO2RR). However, their insufficient selectivity and current density constrain their further exploration in the eCO2RR. In this work, by introducing a very small proportion of 2,5-dihydroxyterephthalic acid (DOBDC) into ZIF-8, a surface modified ZIF-8-5% catalyst was synthesized by a post-modification method, exhibiting enhanced selectivity (from 56% to 79%) and current density (from -4 mA cm-2 to -10 mA m-2) compared to ZIF-8. Density functional theory (DFT) calculations further demonstrate that the boosted eCO2RR performance on ZIF-8-5% could be attributed to the improved formation of the *COOH intermediate stemming from successful DOBDC surface modification. This work opens a new path for improving the catalytic properties of MOFs via their surface modification.
RESUMEN
Earth-abundant transition metal catalysis has emerged as an important alternative to noble transition metal catalysis in hydrogenation reactions. However, there has been no Earth-abundant transition metal catalyzed hydrogenation of thioamides reported so far, presumably due to the poisoning of catalysts by sulfur-containing molecules. Herein, we described the first manganese-catalyzed hydrogenative desulfurization of thioamides to amines or imines. The key to success is the use of MnBr(CO)5 instead of commonly-employed pincer-manganese catalysts, together with simple NEt3 and CuBr. This protocol features excellent selectivity on sole cleavage of the C=S bond of thioamides, in contrast to the only known Ru-catalyzed hydrogenation of thioamides, and unprecedented chemo-selectivity tolerating vulnerable functional groups such as nitrile, ketone, aldehyde, ester, sulfone, nitro, olefin, alkyne and heterocycle, which are usually susceptible to common hydride-type reductive protocols.
RESUMEN
Ochratoxin A (OTA) is a naturally occurring mycotoxin that poses serious threats, such as kidney damage, to human health. Therefore, we developed a DNA walker-based dual-signal electrochemical ratiometric platform for OTA detection, which could overlook the variations in environmental and instrumental factors and DNA load densities. Cobalt metal-organic frameworks (Co-MOFs) and toluidine blue were used as the electrochemical signal tag and internal reference probe, respectively. In the presence of OTA, this developed machine resulted in the DNA labelled-Co-MOFs far away from the electrode. Thus, Co-MOFs signal at -1.18 V decreased, while toluidine blue at -0.28 V increased. This proposed strategy has displayed superior sensitivity (limit of detection = 0.31 fg/mL, linear range = 1-50 ng/mL) and high reproducibility. The sensor was also applied for determining OTA content in red wine samples and the results were comparable to those of commercial enzyme-linked immunoassay kits with satisfactory results.
Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Estructuras Metalorgánicas , Ocratoxinas , Humanos , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Cobalto , Cloruro de Tolonio , Reproducibilidad de los Resultados , Ocratoxinas/análisis , ADN/química , Límite de Detección , Oro/químicaRESUMEN
Introduction: Musculoskeletal system gradually degenerates with aging, and a hypoxia environment at a high altitude may accelerate this process. However, the comprehensive effects of high-altitude environments on bones and muscles remain unclear. This study aims to compare the differences in bones and muscles at different altitudes, and to explore the mechanism and influencing factors of the high-altitude environment on the skeletal muscle system. Methods: This is a prospective, multicenter, cohort study, which will recruit a total of 4000 participants over 50 years from 12 research centers with different altitudes (50m~3500m). The study will consist of a baseline assessment and a 5-year follow-up. Participants will undergo assessments of demographic information, anthropomorphic measures, self-reported questionnaires, handgrip muscle strength assessment (HGS), short physical performance battery (SPPB), blood sample analysis, and imaging assessments (QCT and/or DXA, US) within a time frame of 3 days after inclusion. A 5-year follow-up will be conducted to evaluate the changes in muscle size, density, and fat infiltration in different muscles; the muscle function impairment; the decrease in BMD; and the osteoporotic fracture incidence. Statistical analyses will be used to compare the research results between different altitudes. Multiple linear, logistic regression and classification tree analyses will be conducted to calculate the effects of various factors (e.g., altitude, age, and physical activity) on the skeletal muscle system in a high-altitude environment. Finally, a provisional cut-off point for the diagnosis of sarcopenia in adults at different altitudes will be calculated. Ethics and dissemination: The study has been approved by the institutional research ethics committee of each study center (main center number: KHLL2021-KY056). Results will be disseminated through scientific conferences and peer-reviewed publications, as well as meetings with stakeholders. Clinical Trial registration number: http://www.chictr.org.cn/index.aspx, identifier ChiCTR2100052153.
Asunto(s)
Osteoporosis , Sarcopenia , Adulto , Humanos , Persona de Mediana Edad , Anciano , Estudios de Cohortes , Estudios Longitudinales , Sarcopenia/diagnóstico , Sarcopenia/epidemiología , Altitud , Fuerza de la Mano , Estudios Prospectivos , China/epidemiología , Osteoporosis/diagnóstico , Osteoporosis/epidemiología , Proyectos de Investigación , Estudios Multicéntricos como AsuntoRESUMEN
Aflatoxin B1 (AFB1) is a group of heterocyclic aromatic hydrocarbon secondary metabolites, which are the most toxic among the known fungal toxins. Therefore, it becomes particularly important to develop sensitive, accurate, rapid and simple methods for the detection of AFB1. In this work, a method of constructing aflatoxin aptasensor with black phosphorus nano sheet loaded with gold nanoparticles as electrode modification material, Ce-metal organic framework (MOF) material as signal label and prism DNA nano structure modified electrode as recognition interface is proposed. The hybridization between prism DNA and primer probe was used to trigger rolling circle amplification (RCA) on the electrode surface, and then the complementary chain modified with Au NPs@Ce-MOF is bound to the amplification chain to provide electrochemical signals. In the range of 0.024-100 ng mL-1, the response current showed a good linear relationship with the logarithm of aflatoxin concentration, the linear equation was I = 6.4181 lg c + 11.975 with the linear correlation coefficient of 0.9973, and the detection limit was 1.48 pg mL-1 (S/N = 3).
RESUMEN
A sensitive and portable biosensor is proposed for simple detection of microRNAs based on a supersandwich hybridization signal amplification strategy and a glucometer transducer. The presence of a target microRNA triggers the cascading hybridization chain reaction to create long supersandwich assemblies containing multiple biotin-labelled DNA probes. Then, large amounts of biotin-modified invertase signal molecules can attach to the supersandwich assemblies to generate an amplified signal for the glucometer readout. With such supersandwich format, a single target microRNA can introduce many biotin-invertase signal molecules, resulting in a one-to-multiple amplification effect. Thus, the accurate quantification of microRNAs can be achieved in a simple detection fashion without the requirement of expensive or precise instrumentation. The linear range of the biosensor for microRNA was from 0.05 to 100 nM with a detection limit of 48 pM. The proposed biosensor can discriminate the target microRNA from its family members with high selectivity and can be successfully applied to the detection of target microRNA spiked in serum samples with a good recovery (96.0-108.0%). Therefore, the proposed biosensor is expected to provide more information for early and accurate cancer diagnosis.