Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Transl Vis Sci Technol ; 13(8): 4, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39093295

RESUMEN

Purpose: This study aims to investigate the impact of axial elongation on ganglion cell complex thickness (GCCT) and retinal capillary density (CD) using wide-field swept-source optical coherence tomography angiography. Methods: A retrospective cross-sectional analysis was conducted involving 506 eyes. Fovea-centered scans were obtained to assess the subregional GCCT and capillary density across the whole retina, the superficial capillary plexus (SCP), and deep capillary plexus (DCP) among three groups: normal control, high myopia (HM) eyes with axial length < 28 mm, and HM eyes with axial length > 28 mm. Regional variations (central vs. peripheral, quadrants difference [superior, inferior, nasal, and temporal]) were analyzed. Results: In HM eyes with axial length > 28 mm, GCCT and retinal CD exhibit a general decline in most regions (P < 0.05). In HM eyes with axial length < 28 mm, significant reductions were observed specifically in peripheral regions, as in the GCCT beyond the 3 × 3 mm2 area and CD in the 9-12 mm whole retina, 9-12 mm superior SCP, and 6-12 mm DCP (P < 0.05). Maximum GCCT and retinal CD reduction with axial elongation was observed in subregions beyond 6 × 6  mm2. Conclusions: GCCT beyond the 3 × 3 mm2 area and peripheral retinal CD beyond the 6 × 6  mm2 area were more susceptible to axial elongation and are thereby deserving of particular attention. Translational Relevance: It is necessary to evaluate different regions during the clinical assessment of the effect of myopia on the fundus and pay close attention to the peripheral retina.


Asunto(s)
Células Ganglionares de la Retina , Vasos Retinianos , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Estudios Transversales , Estudios Retrospectivos , Masculino , Células Ganglionares de la Retina/patología , Femenino , Vasos Retinianos/diagnóstico por imagen , Vasos Retinianos/patología , Persona de Mediana Edad , Adulto , Miopía/patología , Miopía/diagnóstico por imagen , Miopía/fisiopatología , Microvasos/patología , Microvasos/diagnóstico por imagen , Longitud Axial del Ojo/patología , Longitud Axial del Ojo/diagnóstico por imagen , Fibras Nerviosas/patología , Angiografía con Fluoresceína/métodos , Adulto Joven , Anciano , Capilares/patología , Capilares/diagnóstico por imagen
2.
Asia Pac J Ophthalmol (Phila) ; : 100085, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059558

RESUMEN

Large language models (LLMs), a natural language processing technology based on deep learning, are currently in the spotlight. These models closely mimic natural language comprehension and generation. Their evolution has undergone several waves of innovation similar to convolutional neural networks. The transformer architecture advancement in generative artificial intelligence marks a monumental leap beyond early-stage pattern recognition via supervised learning. With the expansion of parameters and training data (terabytes), LLMs unveil remarkable human interactivity, encompassing capabilities such as memory retention and comprehension. These advances make LLMs particularly well-suited for roles in healthcare communication between medical practitioners and patients. In this comprehensive review we discuss the trajectory of LLMs and potential implications for clinicians and patients. For clinicians, LLMs can be used for automated medical documentation, and given better inputs and extensive validation, LLMs may be able to autonomously diagnose and treat in the future. For patient care, LLMs can be used for triage suggestions, summarization of medical documents, explanation of a patient's condition, and customizing patient education materials tailored to their comprehension level. The limitations of LLM and possible solutions for real world use are also presented. Given the rapid advancements in this area, this review attempts to briefly cover many roles that LLMs may play in the ophthalmic space, with a focus on improving the quality of healthcare delivery.

3.
World J Gastrointest Surg ; 16(6): 1618-1628, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38983338

RESUMEN

BACKGROUND: Patients with resectable gastric adenocarcinoma accompanied by vascular cancer thrombus (RGAVCT) have a poor prognosis, with a 5-year survival rate ranging from 18.42%-53.57%. These patients need a reasonable postoperative treatment plan to improve their prognosis. AIM: To determine the most effective postoperative chemotherapy regimen for patients with RGAVCT. METHODS: We retrospectively collected the clinicopathological data of 530 patients who underwent radical resection for gastric cancer between January 2017 and January 2022 and who were pathologically diagnosed with gastric adenocarcinoma with a choroidal cancer embolus. Furthermore, we identified the high-risk variables that can influence the prognosis of patients with RGAVCT by assessing the clinical and pathological features of the patients who met the inclusion criteria. We also assessed the significance of survival outcomes using Mantel-Cox univariate and multivariate analyses. The subgroups of patients with stages I, II, and III disease who received single-, dual-, or triple-drug regimens following surgery were analyzed using SPSS 25.0 and the ggplot2 package in R 4.3.0. RESULTS: In all, 530 eligible individuals with RGAVCT were enrolled in this study. The median overall survival (OS) of patients with RGAVCT was 24 months, and the survival rates were 80.2%, 62.5%, and 42.3% at 12, 24, and 59 months, respectively. Preoperative complications, tumor size, T stage, and postoperative chemotherapy were identified as independent factors that influenced OS in patients with RGAVCT according to the Cox multivariate analysis model. A Kaplan-Meier analysis revealed that chemotherapy had no effect on OS of patients with stage I or II RGAVCT; however, chemotherapy did have an effect on OS of stage III patients. Stage III patients who were treated with chemotherapy consisting of dual- or triple-agent regimens had better survival than those treated with single-agent regimens, and no significant difference was observed in the survival of patients treated with chemotherapy consisting of dual- or triple-agent regimens. CONCLUSION: For patients with stage III RGAVCT, a dual-agent regimen of postoperative chemotherapy should be recommended rather than a triple-agent treatment, as the latter is associated with increased frequency of adverse events.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39021191

RESUMEN

BACKGROUND: The mechanism of action of envafolimab (also known as KN035), a programmed death ligand 1 (PD-L1) inhibitor, in gastric adenocarcinoma patients with low PD-L1 expression is not well understood. AIMS: This study aimed to observe the efficacy of envafolimab in gastric adenocarcinoma with low PD-L1 expression and explore the underlying mechanisms. OBJECTIVE: The objective of this study was to explore the underlying mechanism of envafolimab in gastric cancer with low PD-L1 expression. METHOD: Cytotoxicity and proliferation were evaluated by a CCK8 assay. Transwell assays were used to detect the migration and invasion ability of gastric cancer cells. The effect of envafolimab on the apoptosis of gastric cancer cells was detected by flow cytometry. The effect of envafolimab on gastric cancer cells with low PD-L1 expression was investigated via proteomics and bioinformatics analysis. RESULT: A total of 19 patients with advanced gastric adenocarcinoma who received envafolimab monotherapy or combination therapy were reviewed. Among them, 4 patients had low PD-L1 expression, the objective response rate (ORR) was 75% (3/4), and the disease control rate (DCR) was 100% (4/4). In vitro experiments showed that envafolimab inhibited the proliferation, invasion, and migration of gastric cancer cells with low expression of PD-L1 and induced cell apoptosis. DDX20 may be the target of envafolimab in gastric cancer cells, and it is related to the NF-κB signaling pathway. Western blot results showed that the protein expressions of DDX20, NF-κB p65, and TNF-α in gastric cancer cells were decreased after adding envafolimab. Furthermore, the DDX20 gene was silenced by small interfering RNA to further study the effect of DDX20 on PDL1 low expression in gastric cancer cells. CONCLUSION: This study confirmed that envafolimab could inhibit the growth of gastric cancer cells with low PD-L1 expression by down-regulating DDX20 expression and regulating the NFκB/TNF-α signaling pathway.

5.
J Control Release ; 371: 484-497, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38851537

RESUMEN

The precise and targeted delivery of therapeutic agents to the lesion sites remains a major challenge in treating brain diseases represented by ischemic stroke. Herein, we modified liposomes with mesenchymal stem cells (MSC) membrane to construct biomimetic liposomes, termed MSCsome. MSCsome (115.99 ± 4.03 nm) exhibited concentrated accumulation in the cerebral infarcted hemisphere of mice with cerebral ischemia-reperfusion injury, while showing uniform distribution in the two cerebral hemispheres of normal mice. Moreover, MSCsome exhibited high colocalization with damaged nerve cells in the infarcted hemisphere, highlighting its advantageous precise targeting capabilities over liposomes at both the tissue and cellular levels. Leveraging its superior targeting properties, MSCsome effectively delivered Dl-3-n-butylphthalide (NBP) to the injured hemisphere, making a single-dose (15 mg/kg) intravenous injection of NBP-encapsulated MSCsome facilitate the recovery of motor functions in model mice by improving the damaged microenvironment and suppressing neuroinflammation. This study underscores that the modification of the MSC membrane notably enhances the capacity of liposomes for precisely targeting the injured hemisphere, which is particularly crucial in treating cerebral ischemia-reperfusion injury.


Asunto(s)
Benzofuranos , Sistemas de Liberación de Medicamentos , Liposomas , Células Madre Mesenquimatosas , Daño por Reperfusión , Animales , Daño por Reperfusión/terapia , Masculino , Benzofuranos/administración & dosificación , Isquemia Encefálica/terapia , Materiales Biomiméticos/química , Materiales Biomiméticos/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Trasplante de Células Madre Mesenquimatosas/métodos
6.
Cell Rep Med ; 5(5): 101524, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38670096

RESUMEN

The carbonic anhydrase 2 (Car2) gene encodes the primary isoenzyme responsible for aqueous humor (AH) production and plays a major role in the regulation of intraocular pressure (IOP). The CRISPR-Cas9 system, based on the ShH10 adenovirus-associated virus, can efficiently disrupt the Car2 gene in the ciliary body. With a single intravitreal injection, Car2 knockout can significantly and sustainably reduce IOP in both normal mice and glaucoma models by inhibiting AH production. Furthermore, it effectively delays and even halts glaucomatous damage induced by prolonged high IOP in a chronic ocular hypertension model, surpassing the efficacy of clinically available carbonic anhydrase inhibitors such as brinzolamide. The clinical application of CRISPR-Cas9 based disruption of Car2 is an attractive therapeutic strategy that could bring additional benefits to patients with glaucoma.


Asunto(s)
Sistemas CRISPR-Cas , Anhidrasa Carbónica II , Cuerpo Ciliar , Glaucoma , Presión Intraocular , Animales , Glaucoma/genética , Glaucoma/patología , Glaucoma/metabolismo , Sistemas CRISPR-Cas/genética , Cuerpo Ciliar/metabolismo , Cuerpo Ciliar/patología , Anhidrasa Carbónica II/genética , Anhidrasa Carbónica II/metabolismo , Ratones , Humor Acuoso/metabolismo , Humanos , Modelos Animales de Enfermedad , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Eliminación de Gen , Ratones Endogámicos C57BL , Hipertensión Ocular/genética , Hipertensión Ocular/patología
7.
Physiol Plant ; 176(2): e14275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566267

RESUMEN

Developing and cultivating rice varieties is a potent strategy for reclaiming salinity-affected soils for rice production. Nevertheless, the molecular mechanisms conferring salt tolerance, especially in conventional high-yield japonica rice varieties, remain obscure. In this study, Zhendao 23309 (ZD23309) exhibited significantly less grain yield reduction under a salt stress gradient than the control variety Wuyunjing 30 (WYJ30). High positive correlations between grain yield and dry matter accumulation at the jointing, heading and maturity stages indicated that early salt tolerance performance is a crucial hallmark for yield formation. After a mild salt stress (85 mM NaCl) of young seedlings, RNA sequencing (RNA-seq) of shoot and root separately identified a total of 1952 and 3647 differentially expressed genes (DEGs) in ZD23309, and 2114 and 2711 DEGs in WYJ30, respectively. Gene ontology (GO) analysis revealed numerous DEGs in ZD23309 that play pivotal roles in strengthening salt tolerance, encompassing the response to stimulus (GO:0050896) in shoots and nucleoside binding (GO:0001882) in roots. Additionally, distinct expression patterns were observed in a fraction of genes in the two rice varieties under salt stress, corroborating the efficacy of previously reported salt tolerance genes. Our research not only offers fresh insights into the differences in salt stress tolerance among conventional high-yield rice varieties but also unveils the intricate nature of salt tolerance mechanisms. These findings lay a solid groundwork for deciphering the mechanisms underlying salt tolerance.


Asunto(s)
Oryza , Oryza/fisiología , Perfilación de la Expresión Génica , Estrés Salino , Plantones/fisiología , Tolerancia a la Sal/genética
9.
Small ; 20(23): e2309180, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38148304

RESUMEN

Stroke is the second leading cause of death worldwide, and hypoxia is a major crisis of the brain after stroke. Therefore, providing oxygen to the brain microenvironment can effectively protect neurons from damage caused by cerebral hypoxia. However, there is a lack of timely and effective means of oxygen delivery clinically to the brain for acute cerebral hypoxia. Here, a phase-change based nano oxygen carrier is reported, which can undergo a phase change in response to increasing temperature in the brain, leading to oxygen release. The nano oxygen carrier demonstrate intracerebral oxygen delivery capacity and is able to release oxygen in the hypoxic and inflammatory region of the brain. In the acute ischemic stroke mouse model, the nano oxygen carrier can effectively reduce the area of cerebral infarction and decrease the level of inflammation triggered by cerebral hypoxia. By taking advantage of the increase in temperature during cerebral hypoxia, phase-change oxygen carrier proposes a new intracerebral oxygen delivery strategy for reducing acute cerebral hypoxia.


Asunto(s)
Oxígeno , Animales , Oxígeno/química , Oxígeno/metabolismo , Ratones , Hipoxia Encefálica/metabolismo , Masculino , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Transición de Fase
10.
Acta Ophthalmol ; 102(2): e168-e177, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38129974

RESUMEN

PURPOSE: To compare the diagnostic performance of the capillary density (CD) of the central 1-6 mm and peripheral 6-12 mm annular regions in detecting open-angle glaucoma in high myopia (HM) using 15 × 12 mm wide-field swept-source optical coherence tomography angiography (WF SS-OCTA). METHODS: The study enrolled 206 and 103 eyes with HM and highly myopic open-angle glaucoma (HM-OAG), respectively. WF SS-OCTA images centred on the fovea were obtained to analyse the changes in the CD in the 1-3 mm, 3-6 mm, 6-9 mm, and 9-12 mm annular regions. CD of the superficial capillary plexus (SCP) was measured with the built-in software. The area under the receiver operating characteristic curve (AUROC) of each region was compared. RESULTS: The diagnostic performance of the SCP CD in the central 1-6 mm annular region (AUROC = 0.849) was better than that in the peripheral 6-12 mm annular region (AUROC = 0.756, p = 0.001). The annular AUROCs of SCP CD peaked in the 3-6 mm annular region (AUROC = 0.858) and gradually decreased with increasing diameter and were lower than the corresponding AUROCs of the ganglion cell-inner plexiform layer thickness (p < 0.05 for all comparisons). SCP CD of the inferior quadrant in the 3-6 mm annular region had the best diagnostic performance (AUROC = 0.859). CONCLUSION: The SCP CD in the central 1-6 mm annular region exhibited better diagnostic performance for the detection of HM-OAG in HM. The assessment of more peripheral regions has no added value in detecting glaucoma in HM.


Asunto(s)
Glaucoma de Ángulo Abierto , Miopía , Humanos , Glaucoma de Ángulo Abierto/diagnóstico , Tomografía de Coherencia Óptica/métodos , Células Ganglionares de la Retina , Presión Intraocular , Campos Visuales , Miopía/diagnóstico , Angiografía , Vasos Retinianos
11.
Trends Plant Sci ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38061927

RESUMEN

A recent study by Sedeek et al. provides multiomic resources that illustrate the genetic diversity, metabolites, elemental composition, and the possibility of agronomic trait improvement, through genome-editing technology, for nutrient-rich pigmented rice. This will guide future rice breeding programs for balancing optimal agronomic traits and excellent nutritional quality.

12.
Mol Plant ; 16(11): 1832-1846, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37798878

RESUMEN

Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most important diseases of rice. Utilization of blast-resistance genes is the most economical, effective, and environmentally friendly way to control the disease. However, genetic resources with broad-spectrum resistance (BSR) that is effective throughout the rice growth period are rare. In this work, using a genome-wide association study, we identify a new blast-resistance gene, Pijx, which encodes a typical CC-NBS-LRR protein. Pijx is derived from a wild rice species and confers BSR to M. oryzae at both the seedling and panicle stages. The functions of the resistant haplotypes of Pijx are confirmed by gene knockout and overexpression experiments. Mechanistically, the LRR domain in Pijx interacts with and promotes the degradation of the ATP synthase ß subunit (ATPb) via the 26S proteasome pathway. ATPb acts as a negative regulator of Pijx-mediated panicle blast resistance, and interacts with OsRbohC to promote its degradation. Consistently, loss of ATPb function causes an increase in NAPDH content and ROS burst. Remarkably, when Pijx is introgressed into two japonica rice varieties, the introgression lines show BSR and increased yields that are approximately 51.59% and 79.31% higher compared with those of their parents in a natural blast disease nursery. In addition, we generate PPLPijx Pigm and PPLPijx Piz-t pyramided lines and these lines also have higher BSR to panicle blast compared with Pigm- or Piz-t-containing rice plants. Collectively, this study demonstrates that Pijx not only confers BSR to M. oryzae but also maintains high and stable rice yield, providing new genetic resources and molecular targets for breeding rice varieties with broad-spectrum blast resistance.


Asunto(s)
Magnaporthe , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantones/genética , Plantones/metabolismo , Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Adenosina Trifosfato/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Magnaporthe/genética
13.
Nat Commun ; 14(1): 5906, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737275

RESUMEN

The role of de novo evolved genes from non-coding sequences in regulating morphological differentiation between species/subspecies remains largely unknown. Here, we show that a rice de novo gene GSE9 contributes to grain shape difference between indica/xian and japonica/geng varieties. GSE9 evolves from a previous non-coding region of wild rice Oryza rufipogon through the acquisition of start codon. This gene is inherited by most japonica varieties, while the original sequence (absence of start codon, gse9) is present in majority of indica varieties. Knockout of GSE9 in japonica varieties leads to slender grains, whereas introgression to indica background results in round grains. Population evolutionary analyses reveal that gse9 and GSE9 are derived from wild rice Or-I and Or-III groups, respectively. Our findings uncover that the de novo GSE9 gene contributes to the genetic and morphological divergence between indica and japonica subspecies, and provide a target for precise manipulation of rice grain shape.


Asunto(s)
Traumatismos Craneocerebrales , Oryza , Oryza/genética , Codón Iniciador , Evolución Biológica , Grano Comestible/genética
14.
Genes (Basel) ; 14(5)2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239428

RESUMEN

Elucidating the genetic basis of starch pasting and gelatinization properties is crucial for enhancing the quality of maize and its utility as feed and industrial raw material. In maize, ZmSBE genes encode important starch branching enzymes in the starch biosynthesis pathway. In this study, we re-sequenced the genomic sequences of ZmSBEI, ZmSBEIIa, ZmSBEIIb, and ZmSBEIII in three lines called 335 inbred lines, 68 landrace lines, and 32 teosinte lines. Analyses of nucleotide polymorphisms and haplotype diversity revealed differences in the selection patterns of ZmSBEI, ZmSBEIIa, ZmSBEIIb, and ZmSBEIII during maize domestication and improvement. A marker-trait association analysis of inbred lines detected 22 significant loci, including 18 SNPs and 4 indels significantly associated with three maize starch physicochemical properties. The allele frequencies of two variants (SNP17249C and SNP5055G) were examined in three lines. The frequency of SNP17249C in ZmSBEIIb was highest in teosinte lines, followed by landrace lines, and inbred lines, whereas there were no significant differences in the frequency of SNP5055G in ZmSBEIII among the three lines. These results suggest that ZmSBE genes play an important role in the phenotypic variations in the starch physicochemical properties in maize. The genetic variants detected in this study may be used to develop functional markers for improving maize starch quality.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano , Zea mays , Zea mays/genética , Zea mays/metabolismo , Domesticación , Enzima Ramificadora de 1,4-alfa-Glucano/genética , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Almidón , Polimorfismo de Nucleótido Simple/genética
15.
J Oncol ; 2023: 6318548, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37114211

RESUMEN

Background: Tyrosine kinase inhibitors (TKIs) are the standard therapy for patients with chronic myeloid leukemia (CML). While their use greatly increases patient survival rates and can lead to normal life expectancy, bacterial infections in the lungs continue to play a significant role in determining patient outcomes. Methods: In this study, the medical records of 272 CML and 53 healthy adults were analyzed. Information on age, sex, body temperature, procalcitonin (PCT), C-reactive protein (CRP), and cytokine levels were collected from patients. Since the data belonged to a nonstate distribution, we used the Mann-Whitney U test to examine differences between groups. Cut-off values were analyzed by receiver operating characteristic (ROC) curves. Results: No significant differences in the Th1/2/17 levels were observed in relation to TKI treatment. Further analysis showed that the levels of the interleukins IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-22, IL-12p70, IL-17A, IL-17F, and IL-1ß, interferon (IFN-γ), and tumor necrosis factors (TNF α and ß) were higher in patients with pulmonary bacterial infections compared with uninfected patients. IL-6, IL-8, and IL-10 levels in CML patients with bacterial and fungal coinfection were higher than those in patients without infection. The areas under the ROC curves (AUCs) were found to be 0.73 for IL-5, 0.84 for IL-6, 0.82 for IL-8, 0,71 for IL-10, and 0.84 for TNF-α. AUC values were higher for patients with pulmonary bacterial infection, especially IL-6 (AUC = 0.84, cut-off = 13.78 pg/ml) and IL-8 (AUC = 0.82, cut-off = 14.35 pg/ml), which were significantly better than those for CRP (AUC = 0.80, cut-off = 6.18 mg/l), PCT (AUC = 0.71, cut-off = 0.25 ng/ml), and body temperature (AUC = 0.68, cut-off = 36.8°C). In addition, according to the cut-off values, we found that 83.33% of patients with pulmonary bacterial infections had IL-6 ≥ 13.78 pg/ml, while when IL-6, IL-8, and IL-10 levels simultaneously exceeded the cut-off values, the probability of pulmonary bacterial infection was 93.55%. Conclusions: TKI treatment did not appear to affect cytokine expression in CML patients. However, CML patients with pulmonary bacterial infection had significantly higher levels of Th1/2/17 cytokines. In particular, abnormally elevated IL-6, IL-8, and IL-10 levels were associated with a pulmonary bacterial infection in patients with CML.

17.
Sci Rep ; 12(1): 18373, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319826

RESUMEN

Although aplastic anemia (AA) does not come under the category of blood malignant diseases, the infection that frequently occurs in this bone marrow failure can make it worse. Pulmonary infection is the most prevalent but limiting clinical diagnosis. To find biomarkers predicting bacterial or bacterial-combined fungal infections in the lungs, we reviewed 287 AA medical records including 151 without any infection, 87 with pure pulmonary bacterial infection, and 49 with bacterial and fungal infection were reviewed. There were substantial changes in IL-17F, IL-17A, IFN-γ, IL-6, IL-8, and IL-10 levels between the non-infected and lung bacterial infection groups (P < 0.05). Further, a significant variation in IL-17A, TNF-ß, IL-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, IL-22, and IL-12p70, between the uninfected group and the pulmonary bacterial and fungal infection group (P < 0.05) was observed. The results further revealed significant differences in TNF-ß, IL-12p70, IL-6, IL-8, and IL-10 between the pulmonary bacterial infection group and the fungal infection group (P < 0.05). Moreover, by calculating ROC and cut-off values, we determined that IL-6 (AUC = 0.98, Cut-off = 14.28 pg/ml, P = 0.0000) had a significant advantage than other cytokines, body temperature (AUC = 0.61, P = 0.0050), PCT (AUC = 0.57, P = 0.0592), and CRP (AUC = 0.60, P = 0.0147) in the detection of lungs bacterial infections. In addition, IL-6 (AUC = 1.00, Cut-off = 51.50 pg/ml, P = 0.000) and IL-8 (AUC = 0.87, Cut-off = 60.53 pg/ml, P = 0.0000) showed stronger advantages than other cytokines, body temperature (AUC = 0.60, P = 0.0324), PCT (AUC = 0.72, Cut-off = 0.63 ng/ml, P = 0.0000) and CRP (AUC = 0.79, Cut-off = 5.79 mg/l, P = 0.0000) in distinguishing bacteria from fungi. This may suggest that IL-8 may play a role in differentiating co-infected bacteria and fungi. Such advantages are repeated in severe aplastic anemia (SAA) and very severe aplastic anemia (VSAA).In conclusion, aberrant IL-6 elevations in AA patients may predict the likelihood of bacterial lung infection. The concurrent increase of IL-6 and IL-8, on the other hand, should signal bacterial and fungal infections in patients.These findings may help to suggest bacterial or fungal co-infection in patients with AA (Focus on VSAA and SAA).


Asunto(s)
Anemia Aplásica , Infecciones Bacterianas , Coinfección , Micosis , Humanos , Bacterias , Citocinas , Interleucina-10 , Interleucina-12 , Interleucina-17 , Interleucina-6 , Interleucina-8 , Pulmón , Linfotoxina-alfa
18.
PeerJ ; 10: e13744, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36168439

RESUMEN

Background: In the bone marrow microenvironment of postmenopausal osteoporosis (PMOP), bone marrow mesenchymal stem cell (BMSC)-derived exosomal miRNAs play an important role in bone formation and bone resorption, although the pathogenesis has yet to be clarified. Methods: BMSC-derived exosomes from ovariectomized rats (OVX-Exo) and sham-operated rats (Sham-Exo) were co-cultured with bone marrow-derived macrophages to study their effects on osteoclast differentiation. Next-generation sequencing was utilized to identify the differentially expressed miRNAs (DE-miRNAs) between OVX-Exo and Sham-Exo, while target genes were analyzed using bioinformatics. The regulatory effects of miR-27a-3p and miR-196b-5p on osteogenic differentiation of BMSCs and osteoclast differentiation were verified by gain-of-function and loss-of-function analyses. Results: Osteoclast differentiation was significantly enhanced in the OVX-Exo treatment group compared to the Sham-Exo group. Twenty DE-miRNAs were identified between OVX-Exo and Sham-Exo, among which miR-27a-3p and miR-196b-5p promoted the expressions of osteogenic differentiation markers in BMSCs. In contrast, knockdown of miR-27a-3p and miR-196b-5p increased the expressions of osteoclastic markers in osteoclast. These 20 DE-miRNAs were found to target 11435 mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these target genes were involved in several biological processes and osteoporosis-related signaling pathways. Conclusion: BMSC-derived exosomal miR-27a-3p and miR-196b-5p may play a positive regulatory role in bone remodeling.


Asunto(s)
Remodelación Ósea , Células Madre Mesenquimatosas , MicroARNs , Animales , Ratas , Resorción Ósea/metabolismo , Diferenciación Celular/genética , Células Madre Mesenquimatosas/fisiología , MicroARNs/genética , Osteogénesis/genética , Femenino , Remodelación Ósea/genética , Exosomas/genética
19.
Genes (Basel) ; 13(9)2022 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-36140800

RESUMEN

Nitrogen (N) is one of the most important factors affecting crop production. Root morphology exhibits a high degree of plasticity to nitrogen deficiency. However, the mechanisms underlying the root foraging response under low-N conditions remain poorly understood. In this study, we analyzed 213 maize inbred lines using hydroponic systems and regarding their natural variations in 22 root traits and 6 shoot traits under normal (2 mM nitrate) and low-N (0 mM nitrate) conditions. Substantial phenotypic variations were detected for all traits. N deficiency increased the root length and decreased the root diameter and shoot related traits. A total of 297 significant marker-trait associations were identified by a genome-wide association study involving different N levels and the N response value. A total of 51 candidate genes with amino acid variations in coding regions or differentially expressed under low nitrogen conditions were identified. Furthermore, a candidate gene ZmNAC36 was resequenced in all tested lines. A total of 38 single nucleotide polymorphisms and 12 insertions and deletions were significantly associated with lateral root length of primary root, primary root length between 0 and 0.5 mm in diameter, primary root surface area, and total length of primary root under a low-N condition. These findings help us to improve our understanding of the genetic mechanism of root plasticity to N deficiency, and the identified loci and candidate genes will be useful for the genetic improvement of maize tolerance cultivars to N deficiency.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Aminoácidos/genética , Perfilación de la Expresión Génica , Nitratos/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Plantones/genética
20.
Front Plant Sci ; 13: 964246, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991390

RESUMEN

It was suggested that the most effective way to improve rice grain yield is to increase the grain number per panicle (GN) through the breeding practice in recent decades. GN is a representative quantitative trait affected by multiple genetic and environmental factors. Understanding the mechanisms controlling GN has become an important research field in rice biotechnology and breeding. The regulation of rice GN is coordinately controlled by panicle architecture and branch differentiation, and many GN-associated genes showed pleiotropic effect in regulating tillering, grain size, flowering time, and other domestication-related traits. It is also revealed that GN determination is closely related to vascular development and the metabolism of some phytohormones. In this review, we summarize the recent findings in rice GN determination and discuss the genetic and molecular mechanisms of GN regulators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA