Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(64): 8407-8410, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39028223

RESUMEN

A Co-CoSe core-shell heterostructure encapsulated into nitrogen-doped carbon nanotubes enables superior zinc air battery performance (172 mW cm-2) and stability (970 h). The enhanced bifunctionality and stability originates from the modulated d band center and confinement effect, respectively.

2.
Adv Sci (Weinh) ; 11(30): e2402380, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837633

RESUMEN

Simultaneously achieving high-energy-density and high-power-density is a crucial yet challenging objective in the pursuit of commercialized power batteries. In this study, atomic layer deposition (ALD) is employed combined with a coordinated thermal treatment strategy to construct a densely packed, electron-ion dual conductor (EIC) protective coating on the surface of commercial LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode material, further enhanced by gradient Al doping (Al@EIC-NCM523). The ultra-thin EIC effectively suppresses side reactions, thereby enhancing the stability of the cathode-electrolyte interphase (CEI) at high-voltages. The EIC's dual conduction capability provides a potent driving force for Li+ transport at the interface, promoting the formation of rapid ion deintercalation pathways within the Al@EIC-NCM523 bulk phase. Moreover, the strategic gradient doping of Al serves to anchor the atomic spacing of Ni and O within the structure of Al@EIC-NCM523, curbing irreversible phase transitions at high-voltages and preserving the integrity of its layered structure. Remarkably, Al@EIC-NCM523 displays an unprecedented rate capability (114.7 mAh g-1 at 20 C), and a sustained cycling performance (capacity retention of 74.72% after 800 cycles at 10 C) at 4.6 V. These findings demonstrate that the proposed EIC and doping strategy holds a significant promise for developing high-energy-density and high-power-density lithium-ion batteries (LIBs).

3.
J Colloid Interface Sci ; 672: 170-178, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838626

RESUMEN

The sluggish kinetics and inferior stability of oxygen electrocatalyst in rechargeable zinc air battery (ZAB) hamper its industrialization. In this work, we activate cobalt telluride (CoTe) by introduction of metallic cobalt (Co) to modulate the work function to facilitate the electron transfer from Co to CoTe during oxygen catalysis; additionally, the three-dimensional porous carbon nanosheets (3DPC) are invited to reduce the resistance towards electrolyte/oxygen diffusion. Thereby, Co-CoTe@3DPC only demands 280 mV overpotential to reach 10 mA cm-2 under alkaline oxygen evolution reaction (OER) condition, relatively lower than commercial iridium oxides (IrO2); besides, the operando electrochemical impedance spectroscopy (EIS) indicates a better resistance towards surface reconstruction than Co@3DPC leading to a superior stability. A Pt-like oxygen reduction reaction (ORR) performance, half-wave potential associated with kinetic current density, is achieved for Co-CoTe@3DPC. A maximum power density of 203 mW cm-2 is achieved and sustains for 800 h. Furthermore, the all-solid-state ZAB offers 97 mW cm-2. Theoretical calculation suggests that the incorporation of metallic Co to CoTe maintains the superb ORR activity and promotes the OER catalysis.

4.
Chem Commun (Camb) ; 60(44): 5747-5750, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38747111

RESUMEN

CoO/Fe3O4 nanosheets exhibit a superior rechargeable zinc-air battery (ZAB) performance of 276 mW cm-2 and stability over 600 h. The all-solid-state ZAB also affords a high power density of 107 mW cm-2.

5.
Angew Chem Int Ed Engl ; 63(32): e202407898, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38739536

RESUMEN

The quest for smart electronics with higher energy densities has intensified the development of high-voltage LiCoO2 (LCO). Despite their potential, LCO materials operating at 4.7 V faces critical challenges, including interface degradation and structural collapse. Herein, we propose a collective surface architecture through precise nanofilm coating and doping that combines an ultra-thin LiAlO2 coating layer and gradient doping of Al. This architecture not only mitigates side reactions, but also improves the Li+ migration kinetics on the LCO surface. Meanwhile, gradient doping of Al inhibited the severe lattice distortion caused by the irreversible phase transition of O3-H1-3-O1, thereby enhanced the electrochemical stability of LCO during 4.7 V cycling. DFT calculations further revealed that our approach significantly boosts the electronic conductivity. As a result, the modified LCO exhibited an outstanding reversible capacity of 230 mAh g-1 at 4.7 V, which is approximately 28 % higher than the conventional capacity at 4.5 V. To demonstrate their practical application, our cathode structure shows improved stability in full pouch cell configuration under high operating voltage. LCO exhibited an excellent cycling stability, retaining 82.33 % after 1000 cycles at 4.5 V. This multifunctional surface modification strategy offers a viable pathway for the practical application of LCO materials, setting a new standard for the development of high-energy-density and long-lasting electrode materials.

6.
J Colloid Interface Sci ; 662: 676-685, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368825

RESUMEN

The zinc-air battery (ZAB) performance and stability strongly depend on the structure of bifunctional electrocatalyst for oxygen reduction/evolution reaction (ORR/OER). In this work, we combine the tip and heterogeneous effects to construct cobalt/cobalt oxide heterostructure nanoarrays (Co/CoO-NAs). Due to the formed heterostructure, more oxygen vacancies are found for Co/CoO-NAs resulting in a 1.4-fold higher ORR intrinsic activity than commercial carbon supported platinum electrocatalyst (Pt/C) at 0.8 V versus reversible hydrogen electrode (vs. RHE). Moreover, a fast surface reconstruction is observed for Co/CoO-NAs during OER catalysis evidenced by in-situ electrochemical impedance spectroscopy and Raman tests. In addition, the tip effect efficiently lowers the mass transfer resistance triggering a low overpotential of 347 mV at 200 mA cm-2 for Co/CoO-NAs. The strong electronic interplay between cobalt (Co) and cobalt oxide (CoO) contributes to a stable battery performance during 1200 h galvanostatic charge-discharge test at 5 mA cm-2. This work offers a new avenue to construct high-performance and stable oxygen electrocatalyst for rechargeable ZAB.

7.
J Acoust Soc Am ; 155(1): 315-327, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38236806

RESUMEN

Direction-of-arrival (DoA) estimation is an important part in sonar signal processing, providing a reliable foundation for tasks, such as underwater object detection and tracking. Although the deep learning model has powerful data fitting capabilities, accurately estimating the orientation of multiple targets with a single model remains a challenging task. To address this challenge, we enhance the permutation invariant training (PIT) technique and propose two different types of methods: multi-group classification with PIT (MC-PIT) and multi-group regression with PIT (MR-PIT). These two frame-level PIT schemes utilize a single model for both training and testing in multi-target scenarios. Furthermore, we evaluate the performance of MR-PIT and MC-PIT with different network backbones and demonstrate that the frame-level PIT has excellent portability. Compared with the model trained with the general multi-label strategy, simulation experiments show that our proposed methods have better multi-target DoA estimation performance. Finally, when the array configuration of simulated and recorded data are consistent, the model with frame-level PIT can achieve good performance on recorded data even only trained on simulation data.

8.
Phys Chem Chem Phys ; 26(3): 2291-2303, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38165716

RESUMEN

In the present work, a theoretical design for the viability of bilayer C4N3 (bi-C4N3) as a promising host material for Li-Se battery was conducted utilizing first-principles calculations. The AA- and AB-stacking configurations of bilayer C4N3 can effectively inhibit the shuttling of high-order polyselenides through the synergistic effect of physical confinement and strong Li-N bonds. Compared to conventional electrolytes, the AA- and AB-stacking bilayer C4N3 demonstrate enhanced adsorption capabilities for the polyselenides. The anchored structures of Se8 or Li2Sen (n = 1, 2, 4, 6, 8) molecules within the bilayer C4N3 exhibit high electrical conductivities, which are beneficial for enhancing the electrochemical performance. The catalytic effects of AA- and AB-stacking bilayer C4N3 were investigated by the reduction of Se8 and the energy barrier associated with the decomposition of Li2Se. The AA- and AB-stacking bilayer C4N3 can significantly decrease the activation barrier and promote the decomposition of Li2Se. The mean square displacement (MSD) curves reveal the pronounceably sluggish Li-ions diffusions in polyselenides within the AA- and AB-stacking bilayer C4N3, which in turn demonstrates the notable prospects in mitigating the shuttle effect.

9.
J Colloid Interface Sci ; 656: 450-456, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38006867

RESUMEN

Direct methanol fuel cell (DMFC) is hampered by the sluggish methanol oxidation reaction. In this work, we have invited rhodium phosphides (Rh2P) to platinum (Pt) as robust MOR electrocatalyst ascribing the excellent water dissociation capability of Rh2P to generate Pt(OH)ads species to mitigate the CO poisoning. MOR mass activity of Rh2P-Pt/C is enhanced by 2- and 3.5-time with relative to commercial Pt/C and PtRu/C, respectively; additionally, the CO anti-poisoning ability is also boosted by 2.4 folds than Pt/C. The in-situ electrochemical impedance spectroscopy test reveals that the water dissociation is accelerated by Rh2P; moreover, the mutual electronic interplay between Pt and Rh2P contributes to a superior resistance towards electrochemical dissolution and coalescence. The theoretical investigation also indicates that d band center of Pt in Rh2P-Pt is downshifted resulting in a lower CO binding strength.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA