Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Base de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 248: 118420, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38316384

RESUMEN

The hydrophobic nature of an extractant is particularly critical in the treatment of wastewater. Considering that dicationic ionic liquids (DILs) are likely to be more hydrophobic, a comparative study of the separation of phenol from waters using [NTf2]- based monocationic ionic liquids (MILs) and DILs is carried out both from experimental and theoretical analysis perspectives. Experimental results revealed that DILs exhibited superior extraction ability compared to MILs, with extraction efficiencies of 93.7% and 97.4% using [BMIM][NTf2] and [C6(MIM)2][NTf2]2 as extractants, respectively. The microscopic examination through theoretical calculations elucidated the higher hydrophobicity and extraction efficiency of DILs over MILs. The results indicated that the DIL showed stronger hydrophobicity than the MIL because the hydrogen bond strength between the DIL and water was lower than that of the MIL. Although the hydrogen bond strength between the DIL and phenol was lower than that of the MIL, the stronger van der Waals forces existed between DIL and phenol, so DIL was more efficient in extracting phenol. In addition, the experimental parameters were optimized to provide basic data for application, such as mass ratio of ILs to water, extraction time and temperature, pH, and initial phenol content. Finally, the DILs were recovered using rotary evaporation apparatus, and the results demonstrated that DILs had good recovery and reuse performance. In brief, this work could provide an effective method for the treatment of phenol-containing wastewater. And the revelation of molecular mechanism is expected to positively impact the design of high-performance task-specific ILs.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Fenol , Aguas Residuales , Fenoles , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA