Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39239925

RESUMEN

Energy-free passive daytime radiative cooling (PDRC) technology makes it an attractive solution to both the building energy crisis and global warming. Spectrally selective porous polymers have great potential for practical PDRC applications owing to their cooling performance and scalability. A fundamental understanding of the relationship between the cooling performance and pore properties is crucial for guiding future structural designs of high-performance PDRC materials. However, one of the key challenges is achieving uniform nanopores and tailorable pore morphologies in the PDRC coating films. Here we demonstrate a strategy to use advanced metal-organic framework (MOF) nanocrystals as a sacrificial template creating a nanoporous poly(vinylidene fluoride) (PVDF) coating film with uniform-sized nanopores for highly daytime passive radiative cooling. The experimental evidence indicates that nanopores around 400 nm in size, comparable to the wavelength within the ultraviolet and visible spectra, along with an appropriate porosity of 37%, contribute to excellent solar reflectance (94.9 ± 0.8%) and high long-wave infrared emission (92.8 ± 1.4%) in the resulting porous PVDF films. This leads to subambient cooling of ≈9.5 °C and a promising net cooling power of 137 W/m2 at midday under solar intensities of ∼1275 and ∼1320 W/m2. The performance equals or exceeds that of state-of-the-art polymeric PDRC designs, and this general strategy of tailing nanostructures is expected to open a new avenue toward high-performance radiative cooling materials for PDRC applications.

3.
Ultramicroscopy ; 182: 28-35, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28646673

RESUMEN

Non-equilibrium molecular dynamics was used to simulate the dynamics of atoms at the atom probe surface and five objective functions were used to quantify errors. The results suggested that before ionization, thermal vibration and collision caused the atoms to displace up to 1Å and 25Å respectively. The average atom displacements were found to vary between 0.2 and 0.5Å. About 9 to 17% of the atoms were affected by collision. Due to the effects of collision and ion-ion repulsion, the back-calculated positions were on average 0.3-0.5Å different from the pre-ionized positions of the atoms when the number of ions generated per pulse was minimal. This difference could increase up to 8-10Å when 1.5ion/nm2 were evaporated per pulse. On the basis of the results, surface ion density was considered an important factor that needed to be controlled to minimize error in the evaporation process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA