RESUMEN
BACKGROUND: Spodoptera frugiperda is a major agricultural pest, and the dispersal of its larvae by spinning silk is one of the causes of crop damage. At present, there are relatively few reports of pest control that affect larvae spinning silk. In this study, the effect of spinning behavior of the S. frugiperda larvae was investigated through a series of experiments. RESULTS: The 3rd instar larvae of S. frugiperda were exposed to azadirachtin, and the pathological changes in the silk glands of S. frugiperda and the differences in their metabolites were analyzed by scanning electron microscopy, histological sectioning, transmission electron microscopy and metabolomics. The results showed that azadirachtin could affect the silk gland of S. frugiperda. After 48 h of treatment with azadirachtin, the silk gland lumen of S. frugiperda appeared vacuolated. KEGG showed that 31 different metabolites were identified, of which 12 were upregulated and 19 were downregulated. These metabolites were enriched in 15 different metabolic pathways, which indicated that the silk gland of S. frugiperda was closely related to the formation of fatty acids and energy metabolism for the silk formation process. CONCLUSIONS: This study provides a preliminary report of the effect of azadirachtin on the spinning behavior of the S. frugiperda larvae. Metabolomic results indicated that histidine, glycine and leucine, which are related to serine protein synthesis, were down-regulated. Azadirachtin can damage the silk glands of S. frugiperda and thus affect spinning behavior. This provides the basis for the control of S. frugiperda by spinning silk. © 2022 Society of Chemical Industry.
Asunto(s)
Insecticidas , Limoninas , Animales , Spodoptera , Insecticidas/farmacología , Limoninas/farmacología , Larva , Seda/farmacologíaRESUMEN
The dissipation and residue levels of emamectin benzoate emulsifiable concentrate (EC) and microemulsion (ME) formulations in tender cowpeas and old cowpeas were investigated under field conditions. The decline curves of emamectin benzoate residues in cowpea corresponded to first-order kinetics. The dissipation rate of emamectin benzoate in tender cowpeas was faster than that in old cowpeas. The half-lives of the EC were 1.34-1.39 d and 1.74-2.31 d in tender cowpea and old cowpea, respectively. For the ME, the half-lives were 1.39-1.51 d and 2.08-2.67 d, respectively. The risk of adult intake of emamectin benzoate from cowpea is within the acceptable limits of the human body. Compared to tender cowpeas, the risk of eating old cowpeas is higher. Emamectin benzoate (EC) is recommended for cowpeas when the intention is to harvest tender cowpeas, while both formulations are acceptable for cowpeas when the intention is to harvest old cowpeas.
Asunto(s)
Ivermectina/análogos & derivados , Vigna/química , Ingestión de Alimentos , Semivida , Humanos , Ivermectina/análisis , Ivermectina/química , Cinética , Residuos de Plaguicidas/análisis , Medición de Riesgo , Espectrometría de Masas en TándemRESUMEN
As a natural enemy of green peach aphids, harlequin ladybirds, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), are also indirectly affected by azadirachtin. In this study, we evaluated the effects of ladybird exposure to azadirachtin through azadirachtin-treated aphids. About 2 mg/L azadirachtin treated aphid can deliver the azadirachtin to ladybird larvae in 12 and 24 h. And azadirachtin treatment affected the rate at which fourth instar larvae and adult ladybirds preyed on aphids. Furthermore, the antifeedant effect increased with increasing azadirachtin concentrations. Twelve hours after exposing fourth instar ladybird larvae to aphids treated with 10 mg/L azadirachtin, the antifeedant effect was 47.70%. Twelve hours after exposing adult ladybirds to aphids treated with 2 mg/L azadirachtin, the antifeedant effect was 67.49%. Forty-eight hours after exposing ladybird larvae to azadirachtin-treated aphids, their bodyweights were 8.37 ± 0.044 mg (2 mg/L azadirachtin), 3.70 ± 0.491 mg (10 mg/L azadirachtin), and 2.39 ± 0.129 mg (50 mg/L azadirachtin). Treatment with azadirachtin affected the ability of ladybirds to prey on aphids. The results indicated that the instant attack rate of ladybird larvae and adults and the daily maximum predation rate were reduced by azadirachtin treatment. Superoxide dismutase (SOD), peroxidase (POD), and peroxide (CAT) enzyme activities of ladybirds were affected after feeding on aphids treated with azadirachtin. Azadirachtin has certain antifeedant effects on ladybirds and affects the ability of ladybirds to prey on aphids and the activities of SOD, POD, and CAT enzymes, which results in inhibition of normal body development.
Asunto(s)
Áfidos/fisiología , Escarabajos/enzimología , Limoninas/toxicidad , Conducta Predatoria/efectos de los fármacos , Animales , Escarabajos/efectos de los fármacos , Escarabajos/crecimiento & desarrollo , Escarabajos/fisiología , Larva/crecimiento & desarrollo , Pisum sativumRESUMEN
[This corrects the article DOI: 10.3389/fphys.2018.01614.].
RESUMEN
Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a reliable technique commonly used in molecular biology to analyze RNA expression. The selection of suitable reference genes for data normalization is a precondition for credible measurements of gene expression levels using RT-qPCR. Propylea japonica is one of the most common pests of many crop systems throughout East Asia, and has often been used in the testing of non-target impacts during environmental risk assessments of genetically engineered plants. The present study assessed the suitability of nine frequently used reference genes for comparisons of P. japonica gene expression. Expression stability was compared across developmental stages, sex, a range of tissues, and following exposure to different temperatures. Data were analyzed using RefFinder, which integrated the results obtained using NormFinder, geNorm, BestKeeper, and the ΔCt method. This led to the identification of unique sets of reference genes for each experimental condition: ribosomal protein S18 (RPS18) and elongation factor 1 α (EF1A) for developmental stage comparisons, RPS18 and EF1A for sex comparisons, EF1A and ribosomal protein L4 for tissue comparisons, and RPS18 and EF1A for analyses of temperature-mediated effects. These reference genes will help to enhance the accuracy of RT-qPCR analyses of P. japonica gene expression. This work represents an initial move towards building a standardized system for RT-qPCR analysis of P. japonica, providing a basis for the ecological risk assessment of RNAi-based insect control products.
Asunto(s)
Escarabajos/genética , Proteínas de Insectos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Animales , Escarabajos/crecimiento & desarrollo , Escarabajos/metabolismo , Femenino , Expresión Génica , Regulación de la Expresión Génica , Proteínas de Insectos/metabolismo , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , TemperaturaRESUMEN
Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a momentous technique for quantifying expression levels of the targeted genes across various biological processes. Selection and validation of appropriate reference genes for RT-qPCR analysis are a pivotal precondition for reliable expression measurement. Henosepilachna vigintioctopunctata is one of the most serious insect pests that attack Solanaceae plants in Asian countries. Recently, the transcriptomes of H. vigintioctopunctata were sequenced, promoting gene functional studies of this insect pest. Unfortunately, the reference genes for H. vigintioctopunctata have not been selected and validated. Here, a total of 7 commonly used reference genes, namely, Actin, GAPDH, RPL13, RPL6, RPL32, RPS18, and ATPB, were selected and assessed for suitability under four experimental conditions, namely, developmental stage, tissue, temperature, and host plant, using RefFinder, which integrates four different analytical tools (Normfinder, geNorm, the ΔCt method, and BestKeeper). The results displayed that RPL13 and RPS18 were the best suitable reference genes for each experimental condition. The relative transcript levels of 2 target genes, lov and TBX1, varied greatly according to normalization with the two most- and least-suited reference genes. Our results will be helpful for improving the accuracy of the RT-qPCR analysis for future functional investigations of target gene expression in H. vigintioctopunctata.