RESUMEN
Previous epidemiological studies on the associations between polyunsaturated fatty acids (PUFAs) and cancer incidence have been inconsistent. We investigated the associations of plasma omega-3 and omega-6 PUFAs with the incidence of overall and 19 site-specific cancers in a large prospective cohort. 253,138 eligible UK Biobank participants were included in our study. With a mean follow-up of 12.9 years, 29,838 participants were diagnosed with cancer. The plasma levels of omega-3 and omega-6 PUFAs were expressed as percentages of total fatty acids (omega-3% and omega-6%). In our main models, both omega-6% and omega-3% were inversely associated with overall cancer incidence (HR per SD = 0.98, 95% CI = 0.96-0.99; HR per SD = 0.99, 95% CI = 0.97-1.00; respectively). Of the 19 site-specific cancers available, 14 were associated with omega-6% and five with omega-3%, all indicating inverse associations, with the exception that prostate cancer was positively associated with omega-3% (HR per SD = 1.03, 95% CI = 1.01-1.05). Our population-based cohort study in UK Biobank indicates small inverse associations of plasma omega-6 and omega-3 PUFAs with the incidence of overall and most site-specific cancers, although there are notable exceptions, such as prostate cancer.
RESUMEN
Background and objectives: Demographic dynamics and natural selection during human evolution shaped the present-day patterns of genetic variations, and geographically varying genetic factors contribute to different disease prevalences across human populations. This study aims to evaluate the presence of positive selection on the gene encoding long-chain fatty acyl-CoA synthetase 1 (ACSL1) and the phenotypic impacts of population-differentiating genetic variants around this gene. Methodology: Three types of statistical tests for positive selection, based on site frequency spectrum, extended haplotype homozygosity and population differentiation, were applied to the whole-genome sequencing data from the 1000 Genomes Project. A phenome-wide association study of ACSL1 was performed with published genome-wide association studies (GWAS) and transcriptome-wide association studies, including phenome-wide studies in biobanks. Results: Genetic variants associated with ACSL1 expression in various tissues exhibit geographically varying allele frequencies. Three types of statistical tests consistently supported the presence of positive selection on the coding and regulatory regions of ACSL1 in African, European, South Asian and East Asian populations. A phenome-wide association study of ACSL1 revealed associations with type 2 diabetes, blood glucose, age at menopause, mean platelet volume and mean reticulocyte volume. The top allele associated with lower diabetes risk has the highest frequency in European populations, whereas the top allele associated with later menopause has the highest frequency in African populations. Conclusions and implications: Positive selection on ACSL1 resulted in geographically varying genetic variants, which may contribute to differential phenotypes across human populations, including type 2 diabetes and age at menopause.
RESUMEN
Introduction: We have recently demonstrated that Sox10-expressing (Sox10 +) cells give rise to mainly type-III neuronal taste bud cells that are responsible for sour and salt taste. The two tissue compartments containing Sox10 + cells in the surrounding of taste buds include the connective tissue core of taste papillae and von Ebner's glands (vEGs) that are connected to the trench of circumvallate and foliate papillae. Methods: In this study, we performed single cell RNA-sequencing of the epithelium of Sox10-Cre/tdT mouse circumvallate/vEG complex and used inducible Cre mouse models to map the cell lineages of vEGs and/or connective tissue (including stromal and Schwann cells). Results: Transcriptomic analysis indicated that Sox10 expression was enriched in the cell clusters of vEG ducts that contained abundant proliferating cells, while Sox10-Cre/tdT expression was enriched in type-III taste bud cells and vEG ductal cells. In vivo lineage mapping showed that the traced cells were distributed in circumvallate taste buds concurrently with those in the vEGs, but not in the connective tissue. Moreover, multiple genes encoding pathogen receptors were enriched in the vEG ducts hosting Sox10 + cells. Discussion: Our data supports that it is the vEGs, not connective tissue core, that serve as the niche of Sox10 + taste bud progenitors. If this is also true in humans, our data indicates that vEG duct is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections.
RESUMEN
BACKGROUND: Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-ß (TGF-ß) superfamily that has gained considerable attention over the last decade for its observed ability to reverse age-related deterioration of multiple tissues, including the heart. Yet as many researchers have struggled to confirm the cardioprotective and anti-aging effects of GDF11, the topic has grown increasingly controversial, and the field has reached an impasse. We postulated that a clearer understanding of GDF11 could be gained by investigating its health effects at the population level. METHODS AND RESULTS: We employed a comprehensive strategy to interrogate results from genome-wide association studies in population Biobanks. Interestingly, phenome-wide association studies (PheWAS) of GDF11 tissue-specific cis-eQTLs revealed associations with asthma, immune function, lung function, and thyroid phenotypes. Furthermore, PheWAS of GDF11 genetic variants confirmed these results, revealing similar associations with asthma, immune function, lung function, and thyroid health. To complement these findings, we mined results from transcriptome-wide association studies, which uncovered associations between predicted tissue-specific GDF11 expression and the same health effects identified from PheWAS analyses. CONCLUSIONS: In this study, we report novel relationships between GDF11 and disease, namely asthma and hypothyroidism, in contrast to its formerly assumed role as a rejuvenating factor in basic aging and cardiovascular health. We propose that these associations are mediated through the involvement of GDF11 in inflammatory signaling pathways. Taken together, these findings provide new insights into the health effects of GDF11 at the population level and warrant future studies investigating the role of GDF11 in these specific health conditions.
Asunto(s)
Bancos de Muestras Biológicas , Proteínas Morfogenéticas Óseas , Estudio de Asociación del Genoma Completo , Factores de Diferenciación de Crecimiento , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/metabolismo , Humanos , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Polimorfismo de Nucleótido Simple , Fenotipo , Sitios de Carácter Cuantitativo , Pleiotropía GenéticaRESUMEN
BACKGROUND: Dyslipidemia is a well-known risk factor for cardiovascular disease, the leading cause of mortality worldwide. Although habitual intake of fish oil is associated with cardioprotective effects through triglyceride reduction, the interactions of fish oil with the genetic predisposition to dysregulated lipids remain elusive. OBJECTIVES: We examined whether fish oil supplementation modifies the association between genetically predicted and observed concentrations of total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides. METHODS: A total of 441,985 participants with complete genetic and phenotypic data from the UK Biobank were included. Polygenic scores (PGS) of the 4 lipids were calculated in participants of diverse ancestries. For each lipid, multivariable linear regression models were used to assess if fish oil supplementation modified the association between PGS and the observed circulating concentration, with adjustment for relevant covariates. RESULTS: Fish oil supplementation attenuates the associations between genetically predicted and observed circulating concentrations of total cholesterol, LDL cholesterol, and triglycerides while accentuating the corresponding association for HDL cholesterol among 424,090 participants of European ancestry. Consistent significant findings were obtained using PGS calculated based on multiple genome-wide association studies or alternative PGS methods. For triglycerides, each standard deviation (SD) increment in PGS is associated with 0.254 [95% confidence interval (CI): 0.248, 0.259] SD increase in the observed concentration among European-ancestry participants who reported fish oil usage. In contrast, a stronger association was observed in nonusers (0.267; 95% CI: 0.263, 0.270). Consistently, we showed that fish oil significantly attenuates the association between genetically predicted and observed concentrations of triglycerides in African-ancestry participants. CONCLUSIONS: Fish oil supplementation attenuates the association between genetically predicted and observed circulating concentrations of total cholesterol, LDL cholesterol, and triglycerides while accentuating the corresponding association for HDL cholesterol in individuals of European ancestry. Further research is needed to understand the clinical implications of these findings.
Asunto(s)
Bancos de Muestras Biológicas , Suplementos Dietéticos , Aceites de Pescado , Humanos , Aceites de Pescado/administración & dosificación , Femenino , Masculino , Reino Unido , Persona de Mediana Edad , Estudios Transversales , Triglicéridos/sangre , Anciano , Adulto , Estudio de Asociación del Genoma Completo , LDL-Colesterol/sangre , Lípidos/sangre , HDL-Colesterol/sangre , Dieta , Colesterol/sangre , Biobanco del Reino UnidoRESUMEN
We examined the associations of vegetarianism with metabolic biomarkers using traditional and genetic epidemiology. First, we addressed inconsistencies in self-reported vegetarianism among UK Biobank participants by utilizing data from two dietary surveys to find a cohort of strict European vegetarians (N = 2,312). Vegetarians were matched 1:4 with nonvegetarians for non-genetic association analyses, revealing significant effects of vegetarianism in 15 of 30 biomarkers. Cholesterol measures plus vitamin D were significantly lower in vegetarians, while triglycerides were higher. A genome-wide association study revealed no genome-wide significant (GWS; 5×10-8) associations with vegetarian behavior. We performed genome-wide gene-vegetarianism interaction analyses for the biomarkers, and detected a GWS interaction impacting calcium at rs72952628 (P = 4.47×10-8). rs72952628 is in MMAA, a B12 metabolic pathway gene; B12 has major deficiency potential in vegetarians. Gene-based interaction tests revealed two significant genes, RNF168 in testosterone (P = 1.45×10-6) and DOCK4 in estimated glomerular filtration rate (eGFR) (P = 6.76×10-7), which have previously been associated with testicular and renal traits, respectively. These nutrigenetic findings indicate genotype can modify the associations between vegetarianism and health outcomes.
Asunto(s)
Biomarcadores , Calcio , Dieta Vegetariana , Estudio de Asociación del Genoma Completo , Tasa de Filtración Glomerular , Testosterona , Humanos , Masculino , Tasa de Filtración Glomerular/genética , Testosterona/sangre , Femenino , Biomarcadores/sangre , Persona de Mediana Edad , Calcio/metabolismo , Polimorfismo de Nucleótido Simple , Vegetarianos , Anciano , Vitamina D/sangre , Adulto , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
We have recently demonstrated that Sox10 -expressing ( Sox10 + ) cells give rise to mainly type-III neuronal taste bud cells that are responsible for sour and salt taste. The two tissue compartments containing Sox10 + cells in the surrounding of taste buds include the connective tissue core of taste papillae and von Ebner's glands (vEGs) that are connected to the trench of circumvallate and foliate papillae. In this study, we used inducible Cre mouse models to map the cell lineages of connective tissue (including stromal and Schwann cells) and vEGs and performed single cell RNA-sequencing of the epithelium of Sox10-Cre/tdT mouse circumvallate/vEG complex. In vivo lineage mapping showed that the distribution of traced cells in circumvallate taste buds was closely linked with that in the vEGs, but not in the connective tissue. Sox10 , but not the known stem cells marker Lgr5 , expression was enriched in the cell clusters of main ducts of vEGs that contained abundant proliferating cells, while Sox10-Cre/tdT expression was enriched in type-III taste bud cells and excretory ductal cells. Moreover, multiple genes encoding pathogen receptors are enriched in the vEG main ducts. Our data indicate that the main duct of vEGs is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections.
RESUMEN
Background: Circulating omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) have been associated with various chronic diseases and mortality, but results are conflicting. Few studies examined the role of omega-6/omega-3 ratio in mortality. Methods: We investigated plasma omega-3 and omega-6 PUFAs and their ratio in relation to all-cause and cause-specific mortality in a large prospective cohort, the UK Biobank. Of 85,425 participants who had complete information on circulating PUFAs, 6461 died during follow-up, including 2794 from cancer and 1668 from cardiovascular disease (CVD). Associations were estimated by multivariable Cox proportional hazards regression with adjustment for relevant risk factors. Results: Risk for all three mortality outcomes increased as the ratio of omega-6/omega-3 PUFAs increased (all Ptrend <0.05). Comparing the highest to the lowest quintiles, individuals had 26% (95% CI, 15-38%) higher total mortality, 14% (95% CI, 0-31%) higher cancer mortality, and 31% (95% CI, 10-55%) higher CVD mortality. Moreover, omega-3 and omega-6 PUFAs in plasma were all inversely associated with all-cause, cancer, and CVD mortality, with omega-3 showing stronger effects. Conclusions: Using a population-based cohort in UK Biobank, our study revealed a strong association between the ratio of circulating omega-6/omega-3 PUFAs and the risk of all-cause, cancer, and CVD mortality. Funding: Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institute of Health under the award number R35GM143060 (KY). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Fatty acids play an essential role in health. Studies have shown that diets high in omega-3 fatty acids found in foods like fish, fish oil, flaxseed and walnuts may be beneficial. Yet some studies have raised concern that too many omega-6 fatty acids in Western diets rich in vegetable oils may be harmful. Some scientists have proposed that the balance of omega-3 and omega-6 in diets is vital to health. They hypothesize that a higher omega-6 to omega-3 fatty acids ratio is detrimental. But, proving that a higher ratio of omega-6 to omega-3 fatty acids is harmful has been difficult. Many studies have found conflicting results. Scientists have struggled to accurately measure fatty acid intake as tracking an individual's dietary intake is challenging and self-reported dietary intake may be incorrect. Additionally, scientists must follow individuals for many years to determine if a high ratio of omega-6 to omega-3 is linked with cancer, heart disease, or death. But, measuring circulating fatty acids in an individual's blood may offer an easier and more reliable approach to studying the health impacts of these vital nutrients. Zhang et al. show that people with higher ratios of omega-6 to omega-3 fatty acids in their blood are at greater risk of dying from cancer, heart disease, or any cause than those with lower ratios. The experiments measured omega-6 and omega-3 fatty acid levels in more than 85,000 participants in the UK Biobank who scientists followed for an average of about 13 years. Participants with the highest ratios of omega-6 to omega-3 fatty acids were 26% more likely to die of any cause, 14% more likely to die of cancer, and 31% more likely to die of heart disease than individuals with the lowest ratios. Individually, high levels of omega-6 fatty acids and high levels of omega-3 fatty acids were both associated with a lower risk of dying. But the protective effects of omega-3 were greater. For example, individuals with the highest levels of omega-6 fatty acids were 23% less likely to die of any cause. By comparison, those with the highest levels of omega-3s were 31% less likely to die. The stronger protection offered by high levels of omega-3s likely explains why having a high ratio of omega-6s to omega-3s was linked to harm. Both are protective. But the protection provided by omega-3s is more robust. The experiments support dietary interventions to raise omega-3 fatty acid levels and maintain a low omega-6 to omega-3 fatty acid ratio to prevent early deaths from cancer, heart disease or other causes. More research is needed to understand the impact of dietary fatty acid intake on other diseases and how genetics may influence the health impact of fatty acids.
Asunto(s)
Enfermedades Cardiovasculares , Ácidos Grasos Omega-3 , Neoplasias , Humanos , Estudios de Cohortes , Estudios Prospectivos , Biobanco del Reino Unido , Bancos de Muestras Biológicas , Ácidos Grasos Omega-6 , Neoplasias/epidemiologíaRESUMEN
Background: Previous epidemiological studies of the associations between polyunsaturated fatty acids (PUFAs) and cancer incidence have been inconsistent. We investigated the associations of plasma omega-3 and omega-6 PUFAs with the incidence of overall and 19 site-specific cancers in a large prospective cohort. Methods: 253,138 eligible UK Biobank participants were included in our study. With a mean follow-up of 12.9 years, 29,838 participants were diagnosed with cancer. The plasma levels of omega-3 and omega-6 PUFAs were expressed as percentages of total fatty acids (omega-3% and omega-6%). Results: In our main models, both omega-6% and omega-3% were inversely associated with overall cancer incidence (HR per SD = 0.98, 95% CI = 0.96-0.99; HR per SD = 0.99, 95% CI = 0.97-1.00; respectively). Of the 19 site-specific cancers available, 14 were associated with omega-6% and five with omega-3%, all indicating inverse associations, with the exception that prostate cancer was positively associated with omega-3% (HR per SD = 1.03, 95% CI = 1.01 - 1.05). Conclusions: Our population-based cohort study in UK Biobank indicates small inverse associations of plasma omega-6 and omega-3 PUFAs with the incidence of overall and most site-specific cancers, although there are notable exceptions, such as prostate cancer.
RESUMEN
Background: Circulating omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) have been associated with various chronic diseases and mortality, but results are conflicting. Few studies examined the role of omega-6/omega-3 ratio in mortality. Methods: We investigated plasma omega-3 and omega-6 PUFAs and their ratio in relation to all-cause and cause-specific mortality in a large prospective cohort, the UK Biobank. Of 85,425 participants who had complete information on circulating PUFAs, 6,461 died during follow-up, including 2,794 from cancer and 1,668 from cardiovascular disease (CVD). Associations were estimated by multivariable Cox proportional hazards regression with adjustment for relevant risk factors. Results: Risk for all three mortality outcomes increased as the ratio of omega-6/omega-3 PUFAs increased (all Ptrend < 0.05). Comparing the highest to the lowest quintiles, individuals had 26% (95% CI, 15-38%) higher total mortality, 14% (95% CI, 0-31%) higher cancer mortality, and 31% (95% CI, 10-55%) higher CVD mortality. Moreover, omega-3 and omega-6 PUFAs in plasma were all inversely associated with all-cause, cancer, and CVD mortality, with omega-3 showing stronger effects. Conclusions: Using a population-based cohort in UK Biobank, our study revealed a strong association between the ratio of circulating omega-6/omega-3 PUFAs and the risk of all-cause, cancer, and CVD mortality.
RESUMEN
The neural tissue is rich in polyunsaturated fatty acids (PUFAs), components that are indispensable for the proper functioning of neurons, such as neurotransmission. PUFA nutritional deficiency and imbalance have been linked to a variety of chronic brain disorders, including major depressive disorder (MDD), anxiety, and anorexia. However, the effects of PUFAs on brain disorders remain inconclusive, and the extent of their shared genetic determinants is largely unknown. Here, we used genome-wide association summary statistics to systematically examine the shared genetic basis between six phenotypes of circulating PUFAs (N = 114,999) and 20 brain disorders (N = 9,725-762,917), infer their potential causal relationships, identify colocalized regions, and pinpoint shared genetic variants. Genetic correlation and polygenic overlap analyses revealed a widespread shared genetic basis for 77 trait pairs between six PUFA phenotypes and 16 brain disorders. Two-sample Mendelian randomization analysis indicated potential causal relationships for 16 pairs of PUFAs and brain disorders, including alcohol consumption, bipolar disorder (BIP), and MDD. Colocalization analysis identified 40 shared loci (13 unique) among six PUFAs and ten brain disorders. Twenty-two unique variants were statistically inferred as candidate shared causal variants, including rs1260326 (GCKR), rs174564 (FADS2) and rs4818766 (ADARB1). These findings reveal a widespread shared genetic basis between PUFAs and brain disorders, pinpoint specific shared variants, and provide support for the potential effects of PUFAs on certain brain disorders, especially MDD, BIP, and alcohol consumption.
RESUMEN
Background: Dyslipidemia is a well-known risk factor for cardiovascular disease, which has been the leading cause of mortality worldwide. Although habitual intake of fish oil has been implicated in offering cardioprotective effects through triglyceride reduction, the interactions of fish oil with the genetic predisposition to dysregulated lipids remain elusive. Objectives: We examined whether fish oil supplementation can modify the genetic potential for the circulating levels of four lipids, including total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides. Methods: A total of 441,985 participants with complete genetic and phenotypic data from the UK Biobank were included in our study. Polygenic scores (PGS) were calculated in participants of diverse ancestries. Multivariable linear regression models were used to assess associations with adjustment for relevant risk factors. Results: Fish oil supplementation mitigated genetic susceptibility to elevated levels of total cholesterol, LDL-C, and triglycerides, while amplifying genetic potential for increased HDL-C among 424,090 participants of European ancestry Pinteraction<0.05. Consistent significant findings were obtained using PGS calculated based on multiple genome-wide association studies or alternative PGS methods. We also showed that fish oil significantly attenuated genetic predisposition to high triglycerides in African-ancestry participants. Conclusions: Fish oil supplementation attenuated the genetic susceptibility to elevated blood levels of total cholesterol, LDL-C, and triglycerides, while accentuating genetic potential for higher HDL-C. These results suggest that fish oil may have a beneficial impact on modifying genome-wide genetic effects on elevated lipid levels in the general population.
RESUMEN
To prioritize circulating metabolites that likely play causal roles in the pathogenesis of multiple sclerosis (MS). Two-sample Mendelian randomization analysis was performed to estimate the causal effects of 571 circulating metabolites on the risk of MS. Genetic instruments for circulating metabolites were obtained from three previous genome-wide association studies (GWAS) of the blood metabolome (N = 7824; 24,925; and 115,078; respectively), while genetic associations with MS were from a large GWAS by the International Multiple Sclerosis Genetics Consortium (14,802 cases and 26,703 control). The primary analysis was performed with the multiplicative random-effect inverse variance-weighted method, while multiple sensitivity analyses were conducted with the weighted median, weighted mode, MR-Egger, and MR-PRESSO. A total of 29 metabolites had suggestive evidence of causal associations with MS. Genetically instrumented levels of serine (OR = 1.56, 95% CI = 1.25-1.95), lysine (OR = 1.18, 95% CI = 1.01-1.38), acetone (OR = 2.45, 95% CI = 1.02-5.90), and acetoacetate (OR = 2.47, 95% CI = 1.14-5.34) were associated with a higher MS risk. Total cholesterol and phospholipids in large very-low-density lipoprotein were associated with a lower MS risk (OR = 0.83, 95% CI = 0.69-1.00; OR = 0.80, 95% CI = 0.68-0.95), but risk-increasing associations (OR = 1.20, 95% CI = 1.04-1.40; OR = 1.13, 95% CI = 1.00-1.28) were observed for the same two lipids in very large high-density lipoprotein. Our metabolome-wide Mendelian randomization study prioritized a list of circulating metabolites, such as serine, lysine, acetone, acetoacetate, and lipids, that likely have causal associations with MS.
Asunto(s)
Acetoacetatos , Esclerosis Múltiple , Humanos , Acetona , Estudio de Asociación del Genoma Completo , Lisina , Análisis de la Aleatorización Mendeliana , Esclerosis Múltiple/genética , Metaboloma/genética , Serina , Polimorfismo de Nucleótido SimpleRESUMEN
[This corrects the article DOI: 10.3389/fmed.2022.923746.].
RESUMEN
Granzyme A from killer lymphocytes cleaves gasdermin B (GSDMB) and triggers pyroptosis in targeted human tumor cells, eliciting antitumor immunity. However, GSDMB has a controversial role in pyroptosis and has been linked to both anti- and protumor functions. Here, we found that GSDMB splicing variants are functionally distinct. Cleaved N-terminal (NT) fragments of GSDMB isoforms 3 and 4 caused pyroptosis, but isoforms 1, 2, and 5 did not. The nonfunctional isoforms have a deleted or modified exon 6 and therefore lack a stable belt motif. The belt likely contributes to the insertion of oligomeric GSDMB-NTs into the membrane. Consistently, noncytotoxic GSDMB-NTs blocked pyroptosis caused by cytotoxic GSDMB-NTs in a dominant-negative manner. Upon natural killer (NK) cell attack, GSDMB3-expressing cells died by pyroptosis, whereas GSDMB4-expressing cells died by mixed pyroptosis and apoptosis, and GSDMB1/2-expressing cells died only by apoptosis. GSDMB4 partially resisted NK cell-triggered cleavage, suggesting that only GSDMB3 is fully functional. GSDMB1-3 were the most abundant isoforms in the tested tumor cell lines and were similarly induced by interferon-γ and the chemotherapy drug methotrexate. Expression of cytotoxic GSDMB3/4 isoforms, but not GSDMB1/2 isoforms that are frequently up-regulated in tumors, was associated with better outcomes in bladder and cervical cancers, suggesting that GSDMB3/4-mediated pyroptosis was protective in those tumors. Our study indicates that tumors may block and evade killer cell-triggered pyroptosis by generating noncytotoxic GSDMB isoforms. Therefore, therapeutics that favor the production of cytotoxic GSDMB isoforms by alternative splicing may improve antitumor immunity.
Asunto(s)
Empalme Alternativo , Piroptosis , Humanos , Apoptosis , Isoformas de Proteínas/genética , Células Asesinas NaturalesRESUMEN
[This corrects the article DOI: 10.1371/journal.pgen.1009431.].
RESUMEN
Vertebrate myoblast fusion allows for multinucleated muscle fibers to compound the size and strength of mononucleated cells, but the evolution of this important process is unknown. We investigated the evolutionary origins and function of membrane-coalescing agents Myomaker and Myomixer in various groups of chordates. Here, we report that Myomaker likely arose through gene duplication in the last common ancestor of tunicates and vertebrates, while Myomixer appears to have evolved de novo in early vertebrates. Functional tests revealed a complex evolutionary history of myoblast fusion. A prevertebrate phase of muscle multinucleation driven by Myomaker was followed by the later emergence of Myomixer that enables the highly efficient fusion system of vertebrates. Evolutionary comparisons between vertebrate and nonvertebrate Myomaker revealed key structural and mechanistic insights into myoblast fusion. Thus, our findings suggest an evolutionary model of chordate fusogens and illustrate how new genes shape the emergence of novel morphogenetic traits and mechanisms.
RESUMEN
Higher circulating polyunsaturated fatty acids (PUFAs), especially omega-3 fatty acids, have been linked to a better prognosis in patients of coronavirus disease 2019 (COVID-19). However, the effects and causality of pre-infection PUFA levels remain unclear. This study aimed to investigate the observational and causal associations of circulating PUFAs with COVID-19 susceptibility and severity. We first performed a prospective cohort study in UK Biobank, with 20,626 controls who were tested negative and 4,101 COVID-19 patients, including 970 hospitalized ones. Plasma PUFAs at baseline (blood samples collected from 2007 to 2010) were measured by nuclear magnetic resonance, including total PUFAs, omega-3 PUFAs, omega-6 PUFAs, docosahexaenoic acid (DHA), linoleic acid (LA), and the omega-6/omega-3 ratio. Moreover, going beyond UK Biobank, we leveraged summary statistics from existing genome-wide association studies to perform bidirectional two-sample Mendelian randomization (MR) analyses to examine the causal associations of eight individual PUFAs, measured in either plasma or red blood cells, with COVID-19 susceptibility and severity. In the observational association analysis of each PUFA measure separately, total, omega-3, and omega-6 PUFAs, DHA, and LA were associated with a lower risk of severe COVID-19. Omega-3 PUFAs and DHA were also associated with a lower risk of testing positive for COVID-19. The omega-6/omega-3 ratio was positively associated with risks of both susceptibility and severity. When omega-6, omega-3, and their ratio are jointly analyzed, only omega-3 PUFAs remained significantly and inversely associated with both susceptibility and severity. The forward MR analysis indicated that docosapentaenoic acid (DPA-n3) and arachidonic acid (AA) might be causally associated with a lower risk of severe COVID-19, with OR (95% CI) per one SD increase in the plasma level as 0.89 (0.81, 0.99) and 0.96 (0.94, 0.99), respectively. The reverse MR analysis did not support any causal effect of COVID-19 on PUFAs. Our observational analysis supported that higher circulating omega-3 PUFAs, especially DHA, may lower the susceptibility to and alleviate the severity of COVID-19. Our MR analysis further supported causal associations of DPA-n3 and AA with a lower risk of severe COVID-19.
RESUMEN
BACKGROUND: Higher circulating polyunsaturated fatty acids (PUFAs), especially omega-3 ones, have been linked to a better prognosis in patients of coronavirus disease 2019 (COVID-19). However, the effects and causality of pre-infection PUFA levels remain unclear. OBJECTIVE: To investigate the observational and causal associations of circulating PUFAs with COVID-19 susceptibility and severity. DESIGN: We first performed a prospective cohort study in UK Biobank, with 20,626 controls who were tested negative and 4,101 COVID-19 patients, including 970 hospitalized ones. Plasma PUFAs at baseline were measured by nuclear magnetic resonance, including total PUFAs, omega-3 PUFAs, omega-6 PUFAs, docosahexaenoic acid (DHA), linoleic acid (LA), and the omega-6/omega-3 ratio. Moreover, bidirectional two-sample Mendelian randomization (MR) analyses were performed to examine the causal associations of eight individual PUFAs, measured in either plasma or red blood cells, with COVID-19 susceptibility and severity using summary statistics from existing genome-wide association studies. RESULTS: In the observational association analysis, total PUFAs, omega-3 PUFAs, omega-6 PUFAs, DHA, and LA were associated with a lower risk of severe COVID-19. Omega-3 PUFAs and DHA were also associated with a lower risk of testing positive for COVID-19. The omega-6/omega-3 ratio was positively associated with risks of both susceptibility and severity. The forward MR analysis indicated that arachidonic acid (AA) and docosapentaenoic acid (DPA-n3) might be causally associated with a lower risk of severe COVID-19, with OR (95% CI) per one SD increase in the plasma level as 0.96 (0.94, 0.99) and 0.89 (0.81, 0.99), respectively. The reverse MR analysis did not support any causal effect of COVID-19 on PUFAs. CONCLUSIONS: Our observational analysis supported that higher circulating PUFAs, either omega-3 or omega-6, are protective against severe COVID-19, while omega-3 PUFAs, especially DHA, were also associated with reducing COVID-19 susceptibility. Our MR analysis further supported causal associations of AA and DPA-n3 with a lower risk of severe COVID-19.