Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 571
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Alzheimers Dement ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973166

RESUMEN

INTRODUCTION: More robust non-human primate models of Alzheimer's disease (AD) will provide new opportunities to better understand the pathogenesis and progression of AD. METHODS: We designed a CRISPR/Cas9 system to achieve precise genomic deletion of exon 9 in cynomolgus monkeys using two guide RNAs targeting the 3' and 5' intron sequences of PSEN1 exon 9. We performed biochemical, transcriptome, proteome, and biomarker analyses to characterize the cellular and molecular dysregulations of this non-human primate model. RESULTS: We observed early changes of AD-related pathological proteins (cerebrospinal fluid Aß42 and phosphorylated tau) in PSEN1 mutant (ie, PSEN1-ΔE9) monkeys. Blood transcriptome and proteome profiling revealed early changes in inflammatory and immune molecules in juvenile PSEN1-ΔE9 cynomolgus monkeys. DISCUSSION: PSEN1 mutant cynomolgus monkeys recapitulate AD-related pathological protein changes, and reveal early alterations in blood immune signaling. Thus, this model might mimic AD-associated pathogenesis and has potential utility for developing early diagnostic and therapeutic interventions. HIGHLIGHTS: A dual-guide CRISPR/Cas9 system successfully mimics AD PSEN1-ΔE9 mutation by genomic excision of exon 9. PSEN1 mutant cynomolgus monkey-derived fibroblasts exhibit disrupted PSEN1 endoproteolysis and increased Aß secretion. Blood transcriptome and proteome profiling implicate early inflammatory and immune molecular dysregulation in juvenile PSEN1 mutant cynomolgus monkeys. Cerebrospinal fluid from juvenile PSEN1 mutant monkeys recapitulates early changes of AD-related pathological proteins (increased Aß42 and phosphorylated tau).

2.
aBIOTECH ; 5(2): 247-261, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974861

RESUMEN

Genome editing holds great promise for the molecular breeding of plants, yet its application is hindered by the shortage of simple and effective means of delivering genome editing reagents into plants. Conventional plant transformation-based methods for delivery of genome editing reagents into plants often involve prolonged tissue culture, a labor-intensive and technically challenging process for many elite crop cultivars. In this review, we describe various virus-based methods that have been employed to deliver genome editing reagents, including components of the CRISPR/Cas machinery and donor DNA for precision editing in plants. We update the progress in these methods with recent successful examples of genome editing achieved through virus-based delivery in different plant species, highlight the advantages and limitations of these delivery approaches, and discuss the remaining challenges.

3.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891991

RESUMEN

The testes serve as the primary source of androgens and the site of spermatogenesis, with their development and function governed by hormonal actions via endocrine and paracrine pathways. Male fertility hinges on the availability of testosterone, a cornerstone of spermatogenesis, while follicle-stimulating hormone (FSH) signaling is indispensable for the proliferation, differentiation, and proper functioning of Sertoli and germ cells. This review covers the research on how androgens, FSH, and other hormones support processes crucial for male fertility in the testis and reproductive tract. These hormones are regulated by the hypothalamic-pituitary-gonad (HPG) axis, which is either quiescent or activated at different stages of the life course, and the regulation of the axis is crucial for the development and normal function of the male reproductive system. Hormonal imbalances, whether due to genetic predispositions or environmental influences, leading to hypogonadism or hypergonadism, can precipitate reproductive disorders. Investigating the regulatory network and molecular mechanisms involved in testicular development and spermatogenesis is instrumental in developing new therapeutic methods, drugs, and male hormonal contraceptives.


Asunto(s)
Espermatogénesis , Testículo , Humanos , Masculino , Testículo/metabolismo , Testículo/crecimiento & desarrollo , Animales , Hormona Folículo Estimulante/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Andrógenos/metabolismo , Testosterona/metabolismo
4.
BMC Urol ; 24(1): 113, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807082

RESUMEN

BACKGROUND: Hemorrhage is a common complication of nephrostomy and percutaneous nephrolithotripsy, and it is caused by surgical factors. Here we report a rare case of hemorrhage caused by sepsis-related coagulation dysfunction. CASE PRESENTATION: A 72-years-old male patient with bilateral ureteral calculi accompanied by hydronephrosis and renal insufficiency developed sepsis and hemorrhage on the third day after bilateral nephrostomy. After vascular injury was excluded by DSA, the hemorrhage was considered to be sepsis-associated coagulopathy(SAC/SIC), finally the patient recovered well after active symptomatic treatment. CONCLUSIONS: In patients with sepsis and hemorrhage, SAC/SIC cannot be excluded even if coagulation function is slightly abnormal after surgical factors are excluded. For urologists who may encounter similar cases in their general urology practice, it is important to be aware of these unusual causes of hemorrhage.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Nefrostomía Percutánea , Sepsis , Humanos , Masculino , Anciano , Sepsis/etiología , Nefrostomía Percutánea/efectos adversos , Trastornos de la Coagulación Sanguínea/etiología , Hemorragia Posoperatoria/etiología
5.
Int J Rheum Dis ; 27(5): e15165, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38769820

RESUMEN

OBJECTIVE: To compare the clinical efficacy of febuxostat combined with a low-purine diet versus allopurinol combined with a low-purine diet in the treatment of gout. METHODS: In this prospective controlled trial, 98 gout patients admitted to our hospital from February 2021 to December 2022 were enrolled as study subjects. Patients were randomly assigned to the study group (febuxostat combined with a low-purine diet) and the control group (allopurinol combined with a low-purine diet), with 49 patients in each group. The therapeutic effect was evaluated based on joint function and serum uric acid levels after treatment, and classified into three levels: markedly effective, effective, and ineffective. The levels of inflammatory factors, including tumor necrosis factor-a (TNF-a), cytokine interleukin-1beta (IL-1ß), and interleukin (IL)-18 (IL-18), were collected. The Numeric Rating Scale (NRS) was used to assess the degree of pain in patients. Clinical indicators before and 6 months after treatment were compared between the two groups. RESULTS: There was no statistically significant difference in age and gender between the two groups. After 6 months of treatment, the effective rate in the study group (48 cases, 97.96%) was higher than that in the control group (42 cases, 85.71%), with a statistically significant difference (p = .027). At the same time, the study group had significantly lower levels of serum uric acid (162.39 µmol/L ± 17.23 µmol/L vs. S198.32 µmol/L ± 18.34 µmol/L, p < .001), creatinine (87.39 mmol/L ± 9.76 mmol/L vs. 92.18 mmol/L ± 9.27 mmol/L, p = .014), total cholesterol (3.65 mmol/L ± 0.65 mmol/L vs. 4.76 mmol/L ± 0.73 mmol/L, p < .001), and triglycerides (1.76 mmol/L ± 0.32 mmol/L vs. 2.28 mmol/L ± 0.41 mmol/L, p < .001) compared to the control group, with statistically significant differences (p < .05). After treatment, the levels of inflammatory factors and degree of pain in the study group were significantly lower than those in the control group (all p < .05). During the treatment process, the incidence of adverse reactions in the study group (2 cases, 4.08%) was lower than that in the control group (9 cases, 18.37%), with a statistically significant difference (p = .025). CONCLUSION: Febuxostat combined with a low-purine diet can reduce inflammatory factors and alleviate the degree of pain in gout patients, significantly improving their clinical symptoms.


Asunto(s)
Alopurinol , Febuxostat , Supresores de la Gota , Gota , Ácido Úrico , Humanos , Febuxostat/uso terapéutico , Febuxostat/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Alopurinol/uso terapéutico , Gota/tratamiento farmacológico , Gota/sangre , Gota/diagnóstico , Supresores de la Gota/uso terapéutico , Supresores de la Gota/efectos adversos , Estudios Prospectivos , Resultado del Tratamiento , Ácido Úrico/sangre , Anciano , Purinas/uso terapéutico , Biomarcadores/sangre , Terapia Combinada , Factores de Tiempo , Adulto , Mediadores de Inflamación/sangre
6.
Cardiovasc Diabetol ; 23(1): 172, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755609

RESUMEN

BACKGROUND: Insulin resistance (IR) is linked to both the complexity of coronary artery lesions and the prognosis of acute coronary syndrome (ACS). However, the precise extent of this correlation and its impact on adverse cardiovascular outcomes in ACS patients remain unclear. Therefore, this study aims to investigate the intricate relationship between IR, coronary artery lesion complexity, and the prognosis of ACS through a cohort design analysis. METHOD: A total of 986 patients with ACS who underwent percutaneous coronary intervention (PCI) were included in this analysis. IR was assessed using the triglyceride-glucose (TyG) index, while coronary artery lesion complexity was evaluated using the SYNTAX score. Pearson's correlation coefficients were utilized to analyze the correlations between variables. The association of the TyG index and SYNTAX score with major adverse cardiovascular events (MACEs) in ACS was investigated using the Kaplan-Meier method, restricted cubic splines (RCS), and adjusted Cox regression. Additionally, a novel 2-stage regression method for survival data was employed in mediation analysis to explore the mediating impact of the SYNTAX score on the association between the TyG index and adverse cardiovascular outcomes, including MACEs and unplanned revascularization. RESULTS: During a median follow-up of 30.72 months, 167 cases of MACEs were documented, including 66 all-cause deaths (6.69%), 26 nonfatal myocardial infarctions (MIs) (2.64%), and 99 unplanned revascularizations (10.04%). The incidence of MACEs, all-cause death, and unplanned revascularization increased with elevated TyG index and SYNTAX score. Both the TyG index (non-linear, P = 0.119) and SYNTAX score (non-linear, P = 0.004) displayed a positive dose-response relationship with MACEs, as illustrated by the RCS curve. Following adjustment for multiple factors, both the TyG index and SYNTAX score emerged as significant predictors of MACEs across the total population and various subgroups. Mediation analysis indicated that the SYNTAX score mediated 25.03%, 18.00%, 14.93%, and 11.53% of the correlation between the TyG index and MACEs in different adjusted models, respectively. Similar mediating effects were observed when endpoint was defined as unplanned revascularization. CONCLUSION: Elevated baseline TyG index and SYNTAX score were associated with a higher risk of MACEs in ACS. Furthermore, the SYNTAX score partially mediated the relationship between the TyG index and adverse cardiovascular outcomes.


Asunto(s)
Síndrome Coronario Agudo , Biomarcadores , Glucemia , Enfermedad de la Arteria Coronaria , Resistencia a la Insulina , Intervención Coronaria Percutánea , Humanos , Síndrome Coronario Agudo/sangre , Síndrome Coronario Agudo/mortalidad , Síndrome Coronario Agudo/terapia , Síndrome Coronario Agudo/diagnóstico , Síndrome Coronario Agudo/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/mortalidad , Medición de Riesgo , Factores de Riesgo , Resultado del Tratamiento , Glucemia/metabolismo , Factores de Tiempo , Biomarcadores/sangre , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/terapia , Enfermedad de la Arteria Coronaria/mortalidad , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/diagnóstico , Triglicéridos/sangre , Estudios Retrospectivos , Valor Predictivo de las Pruebas
7.
Heliyon ; 10(9): e30418, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38807610

RESUMEN

Objective: To explore the preventive effect of electroacupuncture pretreatment on stroke in rats by inhibiting ferroptosis and oxidative stress. Methods: Rats were randomly assigned to the sham, middle cerebral artery occlusion/reperfusion (MCAO/R), MCAO/R + EP, MCAO/R + EP + erastin, and MCAO/R + EP + ferrostatin 1 groups. Daily electroacupuncture was performed 2 weeks before establishing the MCAO/R model utilizing the modified Zea Longa suture method. Rats were sacrificed 1 day after reperfusion, and brain tissues were collected. They were prepared for hematoxylin and eosin staining, prussian blue staining, transmission electron microscope. Measurement of total iron levels using a commercial kit, detection of malondialdehyde (MDA) and superoxide dismutase (SOD) levels by ELISA, and examination of 15-lox2, GPX4, SLC7A11, ACSL4, and TFR1 by western blotting. Results: Compared with sham rats, cerebral infarction size was dramatically larger in MCAO/R rats. Moreover, the MCAO/R group displayed damaged mitochondria with a disarranged structure of cristae; free iron, total iron levels, and oxidative stress were significantly higher. Cerebral pathological lesions, oxidative stress, total iron levels, and protein levels of ACSL4, TFR1, and 15-lox2 were significantly reduced in the MCAO/R + EP and MCAO/R + EP + ferrostatin 1 groups, while the protective effect of electroacupuncture pretreatment on cerebral ischemia-reperfusion injury was inhibited by treatment with the ferroptosis activator erastin. Conclusion: Electroacupuncture pretreatment can protect rats from cerebral ischemia-reperfusion injury by reducing the area of cerebral infarction and inhibiting ferroptosis and oxidative stress.

8.
Biomol Biomed ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38747892

RESUMEN

Dysregulation of glycolysis is frequently linked to aggressive tumor activity in colorectal cancer (CRC). Although serine peptidase inhibitor, Kazal type 4 (SPINK4) has been linked to CRC, its exact linkage to glycolytic processes and gene expression remains unclear. Differentially expressed genes (DEGs) were screened from two CRC-related datasets (GSE32323 and GSE141174), followed by expression and prognostic analysis of SPINK4. In vitro techniques such as flow cytometry, western blotting, transwell assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to assess SPINK4 expression in CRC cells. Its effects on apoptosis, glycolysis, and the cell cycle were also investigated. Finally, the impact of SPINK4 overexpression on tumor development was assessed using a xenograft model, while histological and immunohistochemical analyses characterized SPINK4 expression patterns in CRC tissues. SPINK4 expression was downregulated in CRC, correlating with poor patient prognosis. In vitro assays confirmed that overexpression of SPINK4 reduced CRC cell proliferation, invasion, and migration, while its knockdown promoted these processes and caused G1 arrest. SPINK4 also regulated apoptosis by altering caspase activation and Bcl-2 expression. Besides, SPINK4 overexpression altered glycolytic activity, reduced 2-Deoxy-D-glucose (2-DG) absorption, and controlled critical glycolytic enzymes, resulting in alterations in metabolic pathways, whereas SPINK4 knockdown reversed this effect. SPINK4 overexpression significantly reduced tumor volume in vivo, indicating its inhibitory role in carcinogenesis. Moreover, high expression of SPINK4, hexokinase 2 (HK2), glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), and pyruvate kinase M2 (PKM2) was observed in CRC tissues. As a key inhibitor of glycolytic metabolism in CRC, SPINK4 promises metabolic intervention in CRC therapy due to its impact on tumor growth and cell proliferation.

9.
Sci Rep ; 14(1): 11630, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773115

RESUMEN

The Jishishan Ms 6.2 earthquake occurred at 23:59 on December 18, 2023 in Gansu Province, China. We conducted a field survey to assess the hazards and damages caused by the earthquake and its associated geo-activities. Subsequently, we organized a seminar to discuss the possible causes of the destruction of a prehistoric site-Lajia Settlement-dated back to four thousand years B.P. and located only several kilometers away from the epicenter of the Jishishan earthquake. The Jishishan earthquake was unique for its hazard and disaster process, which featured ground shaking and a series of complex geological and geomorphological activities: sediment and soil spray piles, liquefaction, collapse, landslide, and mudflow along water channels. We define this phenomenon as the Jishishan earthquake ripple hazard (JERH). The most recent evidence from the JERH suggests that a prehistoric earthquake similar to the JERH, instead of riverine floods or earthquake-induced landslide dam outburst flood, as previously hypothesized, destroyed the Lajia Settlement.

10.
Acta Pharm Sin B ; 14(5): 2177-2193, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38799630

RESUMEN

Mornaphthoate E (MPE) is a prenylated naphthoic acid methyl ester isolated from the roots of a famous Chinese medicinal plant Morinda officinalis and shows remarkable cytotoxicity against several human tumor cell lines. In the current project, the first total synthesis of (±)-MPE was achieved in seven steps and 5.6% overall yield. Then the in vitro anti-tumor activity of MPE was first assessed for both enantiomers in two breast cancer cells, with the levoisomer exerting slightly better potency. The in vivo anti-tumor effect was further verified by applying the racemate in an orthotopic autograft mouse model. Notably, MPE exerted promising anti-metastasis activity both in vitro and in vivo and showed no obvious toxicity on mice at the therapeutic dosage. Mechanistic investigations demonstrated that MPE acted as a tubulin polymerization stabilizer and disturbed the dynamic equilibrium of microtubules via regulating PI3K/Akt signaling. In conclusion, our work has provided a new chemical template for the future design and development of next-generation tubulin-targeting chemotherapies.

11.
Nat Commun ; 15(1): 3015, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589344

RESUMEN

Many experimental and computational efforts have sought to understand DNA origami folding, but the time and length scales of this process pose significant challenges. Here, we present a mesoscopic model that uses a switchable force field to capture the behavior of single- and double-stranded DNA motifs and transitions between them, allowing us to simulate the folding of DNA origami up to several kilobases in size. Brownian dynamics simulations of small structures reveal a hierarchical folding process involving zipping into a partially folded precursor followed by crystallization into the final structure. We elucidate the effects of various design choices on folding order and kinetics. Larger structures are found to exhibit heterogeneous staple incorporation kinetics and frequent trapping in metastable states, as opposed to more accessible structures which exhibit first-order kinetics and virtually defect-free folding. This model opens an avenue to better understand and design DNA nanostructures for improved yield and folding performance.


Asunto(s)
Nanoestructuras , Nanotecnología , Conformación de Ácido Nucleico , ADN/química , Nanoestructuras/química , Cinética
12.
Transl Cancer Res ; 13(3): 1493-1507, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38617511

RESUMEN

Background: Colorectal cancer (CRC) poses a significant challenge in digestive system diseases, and emerging evidence underscores the critical role of zinc metabolism in its progression. This study aimed to investigate the clinical implications of genes at the intersection of zinc metabolism and CRC. Methods: We downloaded CRC prognosis-related genes and zinc metabolism-related genes from public databases. Then, the overlapping genes were screened out, and bioinformatics analysis was performed to obtain the hub gene associated with CRC prognosis. Subsequently, in vitro assays were carried out to investigate the expression of this hub gene and its exact mechanism between zinc metabolism and CRC. Results: HAMP was identified as the hub CRC prognostic gene from overlapping zinc metabolism-related and CRC prognostic genes. In vitro analysis showed HAMP was over-expressed in CRC, and its knockdown inhibited RKO and HCT-116 cell invasion and migration significantly. ZnSO4 induced HAMP up-regulation to promote cell proliferation, while TPEN decreased HAMP expression to inhibit cell proliferation. Importantly, we further found that ZnSO4 enhanced SMAD4 expression to augment HAMP promoter activity and promote cell proliferation in CRC. Conclusions: HAMP stands out as an independent prognostic factor in CRC, representing a potential therapeutic target. Its intricate regulation by zinc, particularly through the modulation of SMAD4, unveils a novel avenue for understanding CRC biology. This study provides valuable insights into the interplay between zinc metabolism, HAMP, and CRC, offering promising clinical indicators for CRC patients. The findings present a compelling case for further exploration and development of targeted therapeutic strategies in CRC management.

13.
Nat Commun ; 15(1): 3563, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670969

RESUMEN

Synthetic glucocorticoids (GC), such as dexamethasone, are extensively used to treat chronic inflammation and autoimmune disorders. However, long-term treatments are limited by various side effects, including muscle atrophy. GC activities are mediated by the glucocorticoid receptor (GR), that regulates target gene expression in various tissues in association with cell-specific co-regulators. Here we show that GR and the lysine-specific demethylase 1 (LSD1) interact in myofibers of male mice, and that LSD1 connects GR-bound enhancers with NRF1-associated promoters to stimulate target gene expression. In addition, we unravel that LSD1 demethylase activity is required for triggering starvation- and dexamethasone-induced skeletal muscle proteolysis in collaboration with GR. Importantly, inhibition of LSD1 circumvents muscle wasting induced by pharmacological levels of dexamethasone, without affecting their anti-inflammatory activities. Thus, our findings provide mechanistic insights into the muscle-specific GC activities, and highlight the therapeutic potential of targeting GR co-regulators to limit corticotherapy-induced side effects.


Asunto(s)
Dexametasona , Glucocorticoides , Histona Demetilasas , Músculo Esquelético , Atrofia Muscular , Receptores de Glucocorticoides , Animales , Masculino , Histona Demetilasas/metabolismo , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/genética , Glucocorticoides/farmacología , Dexametasona/farmacología , Receptores de Glucocorticoides/metabolismo , Ratones , Atrofia Muscular/inducido químicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/tratamiento farmacológico , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Ratones Endogámicos C57BL , Regulación de la Expresión Génica/efectos de los fármacos
14.
Water Res ; 256: 121582, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608621

RESUMEN

Ion-adsorption rare earth element (REE) deposits distributed in the subtropics provide a rich global source of REEs, but in situ injection of REEs extractant into the mine can result in leachate being leaked into the surrounding groundwater systems. Due to the lack of understanding of REE speciation distribution, particularly colloidal characteristics in a mining area, the risks of REEs migration caused by in situ leaching of ion-adsorption REE deposits has not been concerned. Here, ultrafiltration and asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry (AF4-ICP-MS) were integrated to characterize the size and composition of REEs in leachate and groundwater from mining catchments in South China. Results show that REEs were associated with four fractions: 1) the <1 kDa fraction including dissolved REEs; 2) the 1 - 100 kDa nano-colloidal fraction containing organic compounds; 3) the 100 kDa - 220 nm fine colloids including organic-mineral (Fe, Mn and Al (oxy)hydroxides and clay minerals); 4) the >220 nm coarse colloids and acid soluble particles (ASPs) comprising minerals. Influenced by the ion exchange effect of in situ leaching, REEs in leachate were mostly dissolved (79 %). The pH of the groundwater far from the mine site was increased (5.8 - 7.3), the fine organic-mineral colloids (46 % - 80 %) were the main vectors of transport for REEs. Further analysis by AF4 revealed that the fine colloids can be divided into mineral-rich (F1, 100 kDa - 120 nm) and organic matter-rich (F2, 120 - 220 nm) populations. The main colloids associated with REEs shifted from F1 (64 % ∼ 76 %) to F2 (50 % ∼ 52 %) away from the mining area. For F1 and F2, the metal/C molar ratio decreased away from the mining area and middle to heavy REE enrichment was presented. According to the REE fractionation, organic matter was the predominant component capable of binding REEs in fine colloids. Overall, our results indicate that REEs in the groundwater system shifted from the dissolved to the colloidal phase in a catchment affected by in situ leaching, and organic-mineral colloids play an important role in facilitating the migration of REEs.


Asunto(s)
Coloides , Agua Subterránea , Metales de Tierras Raras , Minerales , Minería , Contaminantes Químicos del Agua , Agua Subterránea/química , Coloides/química , China , Minerales/química , Adsorción
15.
Int J Biol Macromol ; 268(Pt 1): 131723, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649072

RESUMEN

Endometrial injury poses a significant challenge in tissue regeneration, with type III collagen (COL III) playing a pivotal role in maintaining endometrial integrity and facilitating repair. Our study explored the utility of recombinant human type III collagen (RHC) as an intervention for endometrial damage. To address the challenges associated with the inherent instability and rapid degradation of COL III in vivo, we developed an RHC-HA hydrogel by conjugating RHC with hyaluronic acid (HA), thus ensuring a more stable and sustained delivery. Our findings suggested that the RHC-HA hydrogel significantly promoted endometrial regeneration and restored fertility. The hydrogel facilitated prolonged retention of RHC in the uterus, leading to a substantial improvement in the repair process. The synergistic interaction between RHC and HA greatly enhances cell proliferation and adhesion, surpassing the efficacy of HA or RHC alone. Additionally, the RHC-HA hydrogel demonstrated notable anti-fibrotic effects, which are crucial for preventing abnormalities during endometrial healing. These findings suggested that the RHC-HA hydrogel presented a therapeutic strategy in the treatment of uterine endometrial injuries, which may improve female reproductive health.


Asunto(s)
Colágeno Tipo III , Endometrio , Matriz Extracelular , Ácido Hialurónico , Hidrogeles , Proteínas Recombinantes , Regeneración , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Femenino , Endometrio/efectos de los fármacos , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/administración & dosificación , Animales , Colágeno Tipo III/metabolismo , Matriz Extracelular/efectos de los fármacos , Regeneración/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Materiales Biomiméticos/farmacología , Materiales Biomiméticos/química , Ratas , Adhesión Celular/efectos de los fármacos
16.
J Extracell Vesicles ; 13(4): e12425, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38594791

RESUMEN

Heterotopic ossification (HO) comprises the abnormal formation of ectopic bone in extraskeletal soft tissue. The factors that initiate HO remain elusive. Herein, we found that calcified apoptotic vesicles (apoVs) led to increased calcification and stiffness of tendon extracellular matrix (ECM), which initiated M2 macrophage polarization and HO progression. Specifically, single-cell transcriptome analyses of different stages of HO revealed that calcified apoVs were primarily secreted by a PROCR+ fibroblast population. In addition, calcified apoVs enriched calcium by annexin channels, absorbed to collagen I via electrostatic interaction, and aggregated to produce calcifying nodules in the ECM, leading to tendon calcification and stiffening. More importantly, apoV-releasing inhibition or macrophage deletion both successfully reversed HO development. Thus, we are the first to identify calcified apoVs from PROCR+ fibroblasts as the initiating factor of HO, and might serve as the therapeutic target for inhibiting pathological calcification.


Asunto(s)
Vesículas Extracelulares , Osificación Heterotópica , Humanos , Receptor de Proteína C Endotelial , Vesículas Extracelulares/patología , Osificación Heterotópica/patología , Osificación Heterotópica/terapia , Matriz Extracelular , Fibroblastos
17.
J Hazard Mater ; 469: 133989, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38461660

RESUMEN

Drinking water disinfection can result in the formation disinfection byproducts (DBPs, > 700 have been identified to date), many of them are reportedly cytotoxic, genotoxic, or developmentally toxic. Analyzing the toxicity levels of these contaminants experimentally is challenging, however, a predictive model could rapidly and effectively assess their toxicity. In this study, machine learning models were developed to predict DBP cytotoxicity based on their chemical information and exposure experiments. The Random Forest model achieved the best performance (coefficient of determination of 0.62 and root mean square error of 0.63) among all the algorithms screened. Also, the results of a probabilistic model demonstrated reliable model predictions. According to the model interpretation, halogen atoms are the most prominent features for DBP cytotoxicity compared to other chemical substructures. The presence of iodine and bromine is associated with increased cytotoxicity levels, while the presence of chlorine is linked to a reduction in cytotoxicity levels. Other factors including chemical substructures (CC, N, CN, and 6-member ring), cell line, and exposure duration can significantly affect the cytotoxicity of DBPs. The similarity calculation indicated that the model has a large applicability domain and can provide reliable predictions for DBPs with unknown cytotoxicity. Finally, this study showed the effectiveness of data augmentation in the scenario of data scarcity.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Cricetinae , Desinfección , Desinfectantes/toxicidad , Desinfectantes/análisis , Halogenación , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Halógenos , Cloro , Agua Potable/análisis , Células CHO
18.
ACS Biomater Sci Eng ; 10(4): 2282-2298, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38526450

RESUMEN

Allergic rhinitis (AR) is a type-I hypersensitivity disease mediated by immunoglobulin E (IgE). Although antihistamines, glucocorticoids, leukotriene receptor antagonists, and other drugs are widely used to treat AR, the various adverse side effects of long-term use of these drugs should not be ignored. Therefore, more effective and safe natural alternative strategies are urgently needed. To this end, this study designed a nanosupramolecular delivery system composed of ß-cyclodextrin supramolecular polymer (PCD), thiolated chitosan (TCS), and natural polyphenol epigallocatechin gallate (EGCG) for intranasal topical continuous treatment of AR. The TCS/PCD@EGCG nanocarriers exhibited an excellent performance in terms of retention and permeability in the nasal mucosa and released the vast majority of EGCG responsively in the nasal microenvironment, thus resulting in the significantly high antibacterial and antioxidant capacities. According to the in vitro model, compared with free EGCG, TCS/PCD@EGCG inhibited mast cell activity and abnormal histamine secretion in a more long-term and sustained manner. According to the in vivo model, whether in the presence of continuous or intermittent administration, TCS/PCD@EGCG substantially inhibited the secretion of allergenic factors and inflammatory factors, mitigated the pathological changes of nasal mucosa, alleviated the symptoms of rhinitis in mice, and produced a satisfactory therapeutic effect on AR. In particular, the therapeutic effect of TCS/PCD@EGCG systems were even superior to that of budesonide during intermittent treatment. Therefore, the TCS/PCD@EGCG nanocarrier is a potential long-lasting antiallergic medicine for the treatment of AR.


Asunto(s)
Catequina/análogos & derivados , Rinitis Alérgica , Animales , Ratones , Rinitis Alérgica/tratamiento farmacológico , Alérgenos/uso terapéutico , Administración Intranasal , Inmunoglobulina E/uso terapéutico
19.
Bone Res ; 12(1): 11, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38383487

RESUMEN

Brain-derived extracellular vesicles participate in interorgan communication after traumatic brain injury by transporting pathogens to initiate secondary injury. Inflammasome-related proteins encapsulated in brain-derived extracellular vesicles can cross the blood‒brain barrier to reach distal tissues. These proteins initiate inflammatory dysfunction, such as neurogenic heterotopic ossification. This recurrent condition is highly debilitating to patients because of its relatively unknown pathogenesis and the lack of effective prophylactic intervention strategies. Accordingly, a rat model of neurogenic heterotopic ossification induced by combined traumatic brain injury and achillotenotomy was developed to address these two issues. Histological examination of the injured tendon revealed the coexistence of ectopic calcification and fibroblast pyroptosis. The relationships among brain-derived extracellular vesicles, fibroblast pyroptosis and ectopic calcification were further investigated in vitro and in vivo. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk reversed the development of neurogenic heterotopic ossification in vivo. The present work highlights the role of brain-derived extracellular vesicles in the pathogenesis of neurogenic heterotopic ossification and offers a potential strategy for preventing neurogenic heterotopic ossification after traumatic brain injury. Brain-derived extracellular vesicles (BEVs) are released after traumatic brain injury. These BEVs contain pathogens and participate in interorgan communication to initiate secondary injury in distal tissues. After achillotenotomy, the phagocytosis of BEVs by fibroblasts induces pyroptosis, which is a highly inflammatory form of lytic programmed cell death, in the injured tendon. Fibroblast pyroptosis leads to an increase in calcium and phosphorus concentrations and creates a microenvironment that promotes osteogenesis. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk suppressed fibroblast pyroptosis and effectively prevented the onset of heterotopic ossification after neuronal injury. The use of a pyroptosis inhibitor represents a potential strategy for the treatment of neurogenic heterotopic ossification.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Vesículas Extracelulares , Osificación Heterotópica , Humanos , Ratas , Animales , Encéfalo/metabolismo , Osificación Heterotópica/etiología , Lesiones Traumáticas del Encéfalo/complicaciones , Barrera Hematoencefálica/metabolismo , Vesículas Extracelulares/metabolismo
20.
RSC Adv ; 14(7): 4503-4508, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38312733

RESUMEN

Organic cocrystal engineering provides a promising route to promote the near-infrared (NIR) light harvesting and photothermal conversion (PTC) abilities of small organic molecules through the rich noncovalent bond interactions of D/A units. Besides, the single-bond rotatable groups known as "rotors" are considered to be conducive to the nonradiative transitions of the excited states of organic molecules. Herein, we propose a single-/double-bond dual-rotor strategy to construct D-A cocrystals for NIR PTC application. The results reveal that the cocrystal exhibits an ultra-broadband absorption from 300 nm to 2000 nm profiting from the strong π-π stacking and charge transfer interactions, and the weakened p-π interaction. More importantly, the PTC efficiency of cocrystals at 1064 nm in the NIR-II region can be largely enhanced by modulating the number of rotor groups and the F-substituents of D/A units. As is revealed by fs-TA spectroscopy, the superior NIR PTC performance can be attributed to the nonradiative decays of excited states induced by the free rotation of the single-bond rotor (-CH3) from the donors and the inactive double-bond rotor ([double bond, length as m-dash]C(C[triple bond, length as m-dash]N)2) being in the active form of [-C(C[triple bond, length as m-dash]N)2] in the excited states from the acceptors. This prototype displays a promising route to extend the functionalization of small organic molecules based on organic cocrystal engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA