RESUMEN
Mesenchymal stem cells (MSCs) are a prevalent source for stem cell therapy and play a crucial role in modulating both innate and adaptive immune responses. Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of triglycerides in liver cells and involves immune system activation, leading to histological changes, tissue damage, and clinical symptoms. A recent publication by Jiang et al, highlighted the potential of MSCs to mitigate in NAFLD progression by targeting various molecular pathways, including glycolipid metabolism, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. In this editorial, we comment on their research and discuss the efficacy of MSC therapy in treating NAFLD.
RESUMEN
Herein, we report a general and efficient Ni-catalyzed reductive cross-coupling reaction of substituted vinyl bromides and α-chloro phosphonates to access a set of α-vinyl phosphonates using zinc as the terminal reductant. This reaction exhibits broad substrate adaptability and good functional group tolerance, which allows to afford diverse compounds including structurally complex motifs from natural products and drugs. Furthermore, the practicality was certificated through the gram-scale and transformation experiments. The preliminary mechanistic investigations support a radical chain process. The potential to realize enantiomeric control makes it more valuable for further exploration.
RESUMEN
Artemisia plants are well-known for their abundant sesquiterpene compounds, which encompass various structural types and exhibit a range of biological activities. In this study, a systematic investigation of Artemisia atrovirens revealed the presence of germacrane-type sesquiterpenes for the first time. This included the discovery of 10 new compounds and three known analogues, among which were two rare dimeric germacrane-type compounds. Their structures were fully characterized through a comprehensive analysis involving MS, IR, 1D- and 2D-NMR spectroscopic data, single crystal X-ray diffraction, density functional theory (DFT) NMR calculations, and time-dependent DFT electronic circular dichroism (TDDFT ECD) calculations. Furthermore, all isolated compounds were evaluated for their anti-inflammatory activity in LPS-stimulated RAW 264.7 murine macrophages. Compound 10 demonstrated a potent inhibitory effect on NO production, with an IC50 value of 4.01 ± 0.09 µM. This study highlights the diverse chemical repertoire of Artemisia species and underscores their potential in drug discovery and development.
RESUMEN
Obesity is a major public health crisis in the United States (US) affecting 42% of the population, exacerbating a spectrum of other diseases and contributing significantly to morbidity and mortality overall. Recent advances in pharmaceutical interventions, particularly glucagon-like peptide-1 (GLP-1) receptor agonists (e.g., semaglutide, liraglutide) and dual gastric inhibitory polypeptide and GLP-1 receptor agonists (e.g., tirzepatide), have shown remarkable efficacy in weight-loss. However, limited access to these medications due to high costs and insurance coverage issues restricts their utility in mitigating the obesity epidemic. We quantify the annual mortality burden directly attributable to limited access to these medications in the US. By integrating hazard ratios of mortality across body mass index categories with current obesity prevalence data, combined with healthcare access, willingness to take the medication, and observed adherence to and efficacy of the medications, we estimate the impact of making these medications accessible to all those eligible. Specifically, we project that with expanded access, over 42,000 deaths could be averted annually, including more than 11,000 deaths among people with type 2 diabetes. These findings underscore the urgent need to address barriers to access and highlight the transformative public health impact that could be achieved by expanding access to these novel treatments.
Asunto(s)
Fármacos Antiobesidad , Obesidad , Humanos , Obesidad/tratamiento farmacológico , Obesidad/epidemiología , Estados Unidos/epidemiología , Fármacos Antiobesidad/uso terapéutico , Masculino , Femenino , Accesibilidad a los Servicios de Salud/estadística & datos numéricos , Persona de Mediana Edad , Adulto , Pérdida de Peso/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón/agonistasRESUMEN
In-plane heterostructures has attracted considerable interest due to exceptional electron transport properties, high specific surface area, and abundant active sites. However, synthesis of in-plane SnS2-SnO2 heterostructures are rarely reported, and the deep investigation of the fine structure on reactivity is of great significance. Here, we propose partial in-situ oxidation strategy to construct the in-plane SnS2-SnO2 heterostructures and the surface properties, the ratio of two components can be finely tuned by precisely adjusting the treatment temperature. In particular, the SnS2-SnO2 heterostructures formed after annealing of SnS2 nanosheets at 350 °C exhibits a unique electronic structure and surface properties due to rich grain boundaries, which exhibits excellent gas sensing performance to H2S (Ra/Rg = 169.81 for 5 ppm H2S at 160 °C, fast response and recovery dynamic (41/101 s), excellent reliability (σ = 0.01) and sensing stability (φ = 0.11 %)). Notably, the in-plane heterostructures endow the material with abundant grain boundaries and effectively regulates the electronic structure of the Sn p-orbital, which facilitate the formation of active oxygen species (O-(ad)), thus contributing to the sensing performance. Our work provides a promising platform to design in-plane heterostructures for various advanced applications.
RESUMEN
A multifunctional sensor comprising flexible and transparent ultraviolet (UV) photodetectors (PDs) with strain gauges based on Ag nanowire (AgNW)@ZnO nanorods (ZnONRs) was fabricated using a cost-effective, simple, and efficient method. High-aspect ratio silver nanowires were synthesized using the polyol method. An AgNW@ZnONR composite was formed via the hydrothermal method to ensure the multifunctional capability of the flexible sensors. After refining the process parameters, the size of the ZnO nanorods was decreased to fabricate pliable multifunctional sensors using AgNW@ZnONRs. At a deposition of 0.207 g of AgNW@ZnONRs, the sensor achieves its maximum switching ratio and fastest response time under conditions of 2000 µW/cm2 UV optical power density. With a ton (rise time) of 2.7 s and a toff (fall time) of 2.3 s, the ratio of Ion to Ioff current is 1151. Additionally, the sensor's maximum optical current value correlates linearly with UV light's power density. The maximum response current increased from 222.5 pA to 588.1 pA, an increase of 164.3%, when the bending angle was increased from 15° to 90° for the sensor with a deposition of 0.276 g of AgNW@ZnONRs. There was no degradation in the response of the sensors after 10,000 bending cycles, as they have excellent stability and repeatability, which means they can meet the requirements of wearable sensor applications. Therefore, there is great potential for the practical application of multifunctional AgNW@ZnONRs in flexible sensors.
RESUMEN
Grain weight and grain shape are important traits that determine rice grain yield and quality. Mining more quantitative trait loci (QTLs) that control grain weight and shape will help to further improve the molecular regulatory network of rice grain development and provide gene resources for high-yield and high-quality rice varieties. In the present study, a QTL for grain length (GL) and grain width (GW), qGL5.2, was firstly fine-mapped into a 21.4 kb region using two sets of near-isogenic lines (NILs) derived from the indica rice cross Teqing (TQ) and IRBB52. In the NIL populations, the GL and ratio of grain length to grain width (RLW) of the IRBB52 homozygous lines increased by 0.16-0.20% and 0.27-0.39% compared with the TQ homozygous lines, but GW decreased by 0.19-0.75%. Then, by analyzing the grain weight and grain shape of the knock-out mutant, it was determined that the annotation gene Os05g0551000 encoded a RING-type E3 ubiquitin ligase, which was the cause gene of qGL5.2. The results show that GL and RLW increased by 2.44-5.48% and 4.19-10.70%, but GW decreased by 1.69-4.70% compared with the recipient. Based on the parental sequence analysis and haplotype analysis, one InDel variation located at -1489 in the promoter region was likely to be the functional site of qGL5.2. In addition, we also found that the Hap 5 (IRBB52-type) increased significantly in grain length and grain weight compared with other haplotypes, indicating that the Hap 5 can potentially be used in rice breeding to improve grain yield and quality.
RESUMEN
Meat quality is important in the meat-production chain. Conflicting reports of the effects of feeding systems on sheep growth performance and meat quality exist. By way of meta-analysis, we reviewed the literature on the growth and slaughter performance, and meat quality of lambs that grazed solely on pasture, those that grazed on pasture but received a dietary supplement, and those were exclusively fed indoors. The relevant literature comprised 28 papers, from which response variables of interest were obtained. Compared with stall-fed sheep, pasture-grazing led to significantly (p < 0.05) lower average daily gain, slaughter live weight, hot carcass weight, cold carcass weight, and similar dressing percentage, but pasture-grazed sheep fed a supplement had similar (p > 0.05) values for each of these attributes to stall-fed sheep. The quality of the longissimus muscle from lambs that grazed either exclusively on pasture or pasture with a supplement had significantly (p < 0.05) lower lightness and intramuscular fat content, and significantly (p < 0.05) higher yellowness, Warner-Bratzler shear force, and protein content than meat from stall-fed sheep. We conclude that sheep that have fed exclusively on pasture have lower carcass yield and meat edibility, but improved meat quality, and that pasture-fed sheep that received a supplement had comparable carcass attributes, but greater meat color and health quality than stall-fed sheep.
RESUMEN
Accelerated intermittent theta burst stimulation (AiTBS) has attracted much attention in the past few years as a new form of brain stimulation paradigm. However, it is unclear the relative efficacy of AiTBS on cortical excitability compared to conventional high-frequency rTMS. Using concurrent TMS and electroencephalogram (TMS-EEG), this study systematically compared the efficacy on cortical excitability and a typical clinical application (i.e. pain), between AiTBS with different intersession interval (ISIs) and 10-Hz rTMS. Participants received 10-Hz rTMS, AiTBS-15 (3 iTBS sessions with a 15-min ISI), AiTBS-50 (3 iTBS sessions with a 50-min ISI), or Sham stimulation over the primary motor cortex on four separate days. All four protocols included a total of 1800 pulses but with different session durations (10-Hz rTMS â= â18, AiTBS-15 â= â40, and AiTBS-50 â= â110 âmin). AiTBS-50 and 10-Hz rTMS were more effective in pain reduction compared to AiTBS-15. Using single-pulse TMS-induced oscillation, our data revealed low gamma oscillation as a shared cortical excitability change across all three active rTMS protocols but demonstrated completely opposite directions. Changes in low gamma oscillation were further associated with changes in pain perception across the three active conditions. In contrast, a distinct pattern of TMS-evoked potentials (TEPs) was revealed, with 10-Hz rTMS decreasing inhibitory N100 amplitude and AiTBS-15 reducing excitatory P60 amplitude. These changes in TEPs were also covarying with low gamma power changes. Sham stimulation indicated no significant effect on either cortical excitability or pain perception. These results are relevant only for provoked experimental pain, without being predictive for chronic pain, and revealed a change in low gamma oscillation, particularly around the very particular frequency of 40 âHz, shared between AiTBS and high-frequency rTMS. Conversely, cortical excitability (balance between excitation and inhibition) assessed by TEP recording was modulated differently by AiTBS and high-frequency rTMS paradigms.
RESUMEN
BACKGROUND: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in premenopausal women, often linked to abdominal obesity, insulin resistance, and metabolic issues. With its heterogeneous nature, PCOS treatment should be tailored to individual symptoms and patient preferences. This study examines collaboration networks among countries, institutions, authors, references, and journals related to PCOS treatment. METHODS: Web of Science data was analyzed using VOSviewer and CiteSpace for bibliometric visualization. Chinese and Western medicine treatments for PCOS were reviewed, emphasizing symptom-targeted solutions. RESULTS: Data from 4682 records authored by 400 individuals from 515 institutes in 62 countries revealed China as the leading contributor. Notable authors include Monash University and Richard S. Legro. Common research themes include adipocytes, inflammation, insulin sensitivity, oxidative stress, and the gut microbiome. Tailoring treatment to individual needs is essential, focusing on hyperandrogenism, ovulation, and insulin resistance, with lifestyle counseling to address obesity. CONCLUSION: This bibliometric analysis provides valuable insights into the research status of PCOS treatment. China has made significant contributions, and complementary and alternative therapies, such as traditional Chinese medicine and acupuncture, have also shown beneficial effects recently. The research on inflammation, oxidative stress, and the gut microbiome may provide new targets and strategies for the treatment of PCOS. The recognition of the metabolic problems in PCOS patients facilitates the formulation of more personalized treatment plans to improve the prognosis of patients.
Asunto(s)
Bibliometría , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/terapia , Humanos , Femenino , Resistencia a la InsulinaRESUMEN
Spontaneous cerebellar hemorrhage (SCH) patients have a low success rate in extubation, but there are currently no guidelines establishing specifically for SCH patients extubation. The study included 68 SCH patients who received mechanical ventilation for more than 24 h, with 39 cases (57.3%) resulting in successful extubation. The multivariate analysis identified four factors significantly associated with extubation success: patient age under 66 years, an Intracerebral Hemorrhage (ICH) score less than 4 points, the presence of tissue shift, and a Glasgow Coma Scale (GCS) score (excluding language) above 6 points at extubation. By simplifying the prediction model, we obtained the Spontaneous Cerebellar Hemorrhage Extubation Success scoring system (SCHES-SCORE). Within the scoring system, 2 points were allocated for a GCS score (excluding language) above 6 at extubation, 1 point each for age under 66 years and an ICH score below 4, while tissue shift was assigned a negative point. A score of Grade A (SCHES-SCORE = 3-4) was found to correlate with a 92.9% success rate for extubation. The area under the receiver operating characteristic curve was 0.923 (95% CI, 0.863 to 0.983). Notably, successful extubation was significantly linked to reduced durations of mechanical ventilation, intensive care unit (ICU) stay, and total hospital stay. In conclusion, the scoring system developed for assessing extubation outcomes in SCH patients has the potential to enhance the rate of successful extubation and overall patient outcomes.
RESUMEN
Iron-binding proteins, known as ferritins, play pivotal roles in immunological response, detoxification, and iron storage. Despite their significance to organisms, little is known about how they affect the immunological system of the red swamp crayfish (Procambarus clarkii). In our previous research, one ferritin subunit was completely discovered as an H-like subunit (PcFeH) from P. clarkii. The full-length cDNA of PcFerH is 1779 bp, including a 5'-UTR (untranslated region, UTR) of 89 bp, 3'-UTR (untranslated region, UTR) of 1180 bp and an ORF (open reading frame, ORF) of 510 bp encoding a polypeptide of 169 amino acids that contains a signal peptide and a Ferritin domain. The deduced PcFerH protein sequence has highly identity with other crayfish. PcFerH protein's estimated tertiary structure is quite comparable to animal structure. The PcFerH is close to Cherax quadricarinatus, according to phylogenetic analysis. All the organs examined showed widespread expression of PcFerH mRNA, with the ovary exhibiting the highest levels of expression. Additionally, in crayfish muscles, intestines, and gills, the mRNA transcript of PcFerH was noticeably up-regulated, after LPS and Poly I:C challenge. The expression of downstream genes in the immunological signaling system was suppressed when the PcFerH gene was knocked down. All of these findings suggested that PcFerH played a vital role in regulating the expression of downstream effectors in the immunological signaling pathway of crayfish.
Asunto(s)
Astacoidea , Inmunidad Innata , Filogenia , Animales , Astacoidea/inmunología , Astacoidea/genética , Secuencia de Aminoácidos , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/metabolismoRESUMEN
BACKGROUND: To compare pain perception, pupil behaviours, and cytokine levels during first-eye and second-eye femtosecond laser-assisted cataract surgery (FLACS) and determine which is better regarding a short or long interval for bilateral FLACS. METHODS: Notably, 96 eyes of 48 patients with bilateral cataracts underwent the first surgeries in the left or right eye, according to a random sequence. They were further randomised into 2- and 6-week subgroups based on surgery intervals. Pupil size was measured from captured images, and pain perception was assessed using a visual analog scale (VAS). Aqueous humour prostaglandin E2 (PGE2), monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6, and IL-8 levels were also quantitatively analysed. All patients were followed for 1 week to evaluate changes in endothelial cell density (ECD), central corneal thickness (CCT), and macular central subfield thickness (CST). RESULTS: Ocular pain was significantly higher in patients who underwent second-eye FLACS. First tear break-up time was negatively correlated with VAS score. MCP-1 levels were significantly higher in patients who underwent second-eye FLACS, and VAS scores were positively correlated with MCP-1 levels across all patients. There were no differences between sequential FLACS in miosis, PGE2, IL-6, IL-8 levels and changes in postoperative ECD, CCT, and CST. Patients who underwent second-eye FLACS after 6 weeks showed more CCT, CST, and MCP-1 changes than baseline. CONCLUSION: Second-eye FLACS causes more pain and upregulated MCP-1. There was no difference between sequential FLACS in PGE2 levels, miosis, and postoperative inflammation. Furthermore, first-eye FLACS triggered a sympathetic irritation, particularly after a 6-week interval.
RESUMEN
The coronavirus disease 2019 (COVID-19) pandemic poses an enormous threat to public health worldwide. Many retrospective studies and case reports to date have shown associations between severe COVID-19 and diseases of multi-organs. However, the research on the causal mechanisms behind this phenomenon is neither extensive nor comprehensive. We conducted a proteome-wide Mendelian randomization (MR) study using summary statistics from a Genome-Wide Association Studies (GWAS) of severe COVID-19 and diseases related to seven organs: lung, spleen, liver, heart, kidney, testis, and thyroid, based on the European ancestry. The primary analytical method used is the radial inverse variance-weighted (radial IVW) method, supplemented with the inverse variance-weighted (IVW), weighted-median (WM), MR-Egger methods. Our findings have confirmed the association between severe COVID-19 and multiple organ-related diseases, such as Hypothyroidism, strict autoimmune (HTCBSA), Thyroid disorders (TD), and Graves' disease (GD). And we have also identified certain proteins that are associated with organ-related diseases, such as Superoxide Dismutase 2 (SOD2) and TEK Receptor Tyrosine Kinase (TEK), which are also considered potential drug targets. Phenotype scanning and sensitivity analyses were implemented to consolidate the results for Mendelian randomization. This study provides a compelling foundation for investigating COVID-19 caused diseases in future studies.
RESUMEN
The distribution of small biomolecules, particularly amino acids (AAs), differs between normal cells and cancer cells. Imaging this distribution is crucial for gaining a deeper understanding of their physiological and pathological significance. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) provides accurate in situ visualization information. However, the analysis of AAs remains challenging due to the background interference by conventional MALDI matrices. On tissue chemical derivatization (OTCD) MSI serves as an important approach to resolve this issue. We designed, synthesized, and tested a series of pyridinium salt probes and screened out the 1-(4-(((2,5-dioxopyrrolidin-1-yl)oxy)carbonyl)phenyl)-2,4,6-triphenylpyridin-1-ium (DCT) probe with the highest reaction efficiency and the most effective detection. Moreover, a quantum chemistry calculation was executed to address mechanistic insight into the chemical nature of the novel probes. DCT was found to map 20 common AAs in normal mouse tissues for the first time, which allowed differentiation of AA distribution in normal, normal interstitium, tumor, and tumor interstitium regions and provided potential mechanistic insights for cancer research and other biomedical studies.
RESUMEN
Polymeric elastomers are extensively employed to fabricate implantable medical devices. However, implantation of the elastomers can induce a strong immune rejection known as the foreign body response (FBR), diminishing their efficacy. Herein, we present a group of immunocompatible elastomers, termed easy-to-synthesize vinyl-based anti-FBR dense elastomers (EVADE). EVADE materials effectively suppress the inflammation and capsule formation in subcutaneous models of rodents and non-human primates for at least one year and two months, respectively. Implantation of EVADE materials significantly reduces the expression of inflammation-related proteins S100A8/A9 in adjacent tissues compared to polydimethylsiloxane. We also show that inhibition or knockout of S100A8/A9 leads to substantial attenuation of fibrosis in mice, suggesting a target for fibrosis inhibition. Continuous subcutaneous insulin infusion (CSII) catheters constructed from EVADE elastomers demonstrate significantly improved longevity and performance compared to commercial catheters. The EVADE materials reported here may enhance and extend function in various medical devices by resisting the local immune responses.
Asunto(s)
Elastómeros , Fibrosis , Reacción a Cuerpo Extraño , Animales , Reacción a Cuerpo Extraño/inmunología , Ratones , Materiales Biocompatibles , Masculino , Ratones Endogámicos C57BL , Femenino , Insulina/metabolismo , Ratas , Inflamación/inmunología , Inflamación/metabolismoRESUMEN
BACKGROUND: Biventricular pacing (BVP) appears to confer more pronounced advantages in women, yet the impact of conduction system pacing (CSP) remains insufficiently characterized. This investigation seeks to elucidate sex-specific disparities in clinical outcomes among patients with typical left bundle branch block (LBBB) undergoing CSP, with a particular focus on assessing contributory factors. METHODS: Consecutive patients diagnosed with nonischemic cardiomyopathy, exhibiting left ventricular ejection fraction (LVEF) ≤ 40%, and manifesting typical LBBB as Strauss criteria, underwent CSP. Subsequent longitudinal monitoring assessed improvements in LVEF and the composite endpoint of mortality or heart failure hospitalization (HFH). RESULTS: Among the included 176 patients, women (n = 84, mean age: 69.5 ± 8.8 years) displayed smaller heart size (LVEDd, 62.0 ± 8.3 mm vs. 64.8 ± 7.9 mm, P = 0.023) and shorter baseline QRSd (163.5 ± 17.7 ms vs. 169.7 ± 15.1 ms; P = 0.013) than men. Of the 171 patients who completed the follow-up, super-response was observed in 120 (70%), with a higher occurrence in women than men (78.3% vs. 62.5%, P = 0.024). The incidence of death or HFH was numerically lower in women (7.1% Vs 13%, Log-rank P = 0.216). Notably, the super-response showed a significant difference in women compared to men at the same electrocardiography and/or echocardiographic parameters value. Mediation analysis between sex and super-response revealed that LVEDd and pQRSd play an intermediary role, with the mediation proportion of 26.07% and 27.98%, respectively. CONCLUSIONS: Women may derive more benefits from CSP, and pQRSd and LVEDd partly drive this difference.
Asunto(s)
Bloqueo de Rama , Humanos , Femenino , Bloqueo de Rama/terapia , Bloqueo de Rama/fisiopatología , Masculino , Anciano , Persona de Mediana Edad , Resultado del Tratamiento , Terapia de Resincronización Cardíaca/métodos , Estudios de Seguimiento , Caracteres Sexuales , Factores Sexuales , Sistema de Conducción Cardíaco/fisiopatología , Electrocardiografía , Estudios RetrospectivosRESUMEN
Spinal cord injury (SCI) is a primary lesion of the spinal cord that results from external forces or diseases, accompanied by a cascade of secondary events. Nitric oxide, an endogenous gas that functions as a signaling molecule in the human body, plays a crucial role in vasodilation of smooth muscles, regulation of blood flow and pressure, and inflammatory response. This article provides a comprehensive overview of the involvement of nitric oxide in SCI and highlights recent advances in basic research on pharmacological agents that inhibit nitric oxide elevation after SCI, offering valuable insights for future therapeutic interventions targeting SCI.
Asunto(s)
Óxido Nítrico , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/metabolismo , Óxido Nítrico/metabolismo , Humanos , AnimalesRESUMEN
In developed countries, stroke is the leading cause of death and disability that affects long-term quality of life and its incidence is increasing. The incidence of ischemic stroke is much higher than that of hemorrhagic stroke. Ischemic stroke often leads to very serious neurological sequelae, which severely reduces the patients' quality of life and becomes a social burden. Therefore, ischemic stroke has received increasing attention. As a new type of anesthetic, sevoflurane has a lower solubility, works faster in the human body, and has less impact on the cardiovascular system than isoflurane. At the same time, studies have shown that preconditioning and postconditioning with sevoflurane have a beneficial effect on stroke. We believe that the role of sevoflurane in stroke may be a key area for future research. Therefore, this review mainly summarizes the relevant mechanisms of sevoflurane preconditioning and postconditioning in stroke in the past 20 years, revealing the bright prospects of sevoflurane in stroke treatment.
Asunto(s)
Sevoflurano , Accidente Cerebrovascular , Sevoflurano/farmacología , Humanos , Accidente Cerebrovascular/tratamiento farmacológico , Anestésicos por Inhalación/farmacología , Anestésicos por Inhalación/uso terapéutico , Animales , Precondicionamiento IsquémicoRESUMEN
Idiopathic sudden sensorineural hearing loss is an unexplained sudden loss of sensorineural hearing, with no specific pathogenesis, and is difficult to treat. The most common therapeutic strategy for idiopathic sudden sensorineural hearing loss is the use of steroids combined with neurotrophic drugs, as other treatments have shown limited efficacy. However, in recent years, hyperbaric oxygen therapy has emerged as a promising treatment option. Studies have shown that hyperbaric oxygen therapy, in combination with conventional treatments, can effectively alleviate inner ear edema, improve blood circulation, and suppress inflammation. Therefore, hyperbaric oxygen therapy plays an important role in the treatment of idiopathic sudden sensorineural hearing loss. In this review, we aim to assess existing studies and summarize the clinical effects and mechanisms of hyperbaric oxygen therapy in idiopathic sudden sensorineural hearing loss, providing a basis for further research on the clinical treatment of this disorder.