Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemosphere ; 362: 142780, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971437

RESUMEN

Lipophilic shellfish toxins (LSTs) are widely distributed in marine environments worldwide, potentially threatening marine ecosystem health and aquaculture safety. In this study, two large-scale cruises were conducted in the Bohai Sea and the Yellow Sea, China, in spring and summer 2023 to clarify the composition, concentration, and spatial distribution of LSTs in the water columns and sediments. Results showed that okadaic acid (OA), dinophysistoxin-1 (DTX1) and/or pectenotoxin-2 (PTX2) were detected in 249 seawater samples collected in spring and summer. The concentrations of ∑LSTs in seawater were ranging of ND (not detected) -13.86, 1.60-17.03, 2.73-17.39, and 1.26-30.21 pmol L-1 in the spring surface, intermediate, bottom water columns and summer surface water layers, respectively. The detection rates of LSTs in spring and summer seawater samples were 97% and 100%, respectively. The high concentrations of ∑LSTs were mainly distributed in the north Yellow Sea and the northeast Bohai Sea in spring, and in the northeast Yellow Sea, the waters around Laizhou Bay and Rongcheng Bay in summer. Similarly, only OA, DTX1 and PTX2 were detected in the surface sediments. Overall, the concentration of ∑LSTs in the surface sediments of the northern Yellow Sea was higher than that in other regions. In sediment cores, PTX2 was mainly detected in the upper sediment samples, whereas OA and DTX1 were detected in deeper sediments, and LSTs can persist in the sediments for a long time. Overall, OA, DTX1 and PTX2 were widely distributed in the water column and surface sediments in the Bohai Sea and the Yellow Sea, China. The results of this study contribute to the understanding of spatial distribution of LSTs in seawater and sediment environmental media and provide basic information for health risk assessment of phycotoxins.

2.
Angew Chem Int Ed Engl ; : e202408874, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972844

RESUMEN

Overcoming tumor apoptosis resistance is a major challenge in enhancing cancer therapy. Pyroptosis, a lytic form of programmed cell death (PCD) involving inflammasomes, Gasdermin family proteins, and cysteine proteases, offers potential in cancer treatment. While photodynamic therapy (PDT) can induce pyroptosis by generating reactive oxygen species (ROS) through the activation of photosensitizers (PSs), many PSs lack specific subcellular targets and are limited to the first near-infrared window, potentially reducing treatment effectiveness. Therefore, developing effective, deep-penetrating, organelle-targeted pyroptosis-mediated phototherapy is essential for cancer treatment strategies. Here, we synthesized four molecules with varying benzene ring numbers in thiopyrylium structures to preliminarily explore their photodynamic properties. The near-infrared-II (NIR-II) PS Z1, with a higher benzene ring count, exhibited superior ROS generation and mitochondria-targeting abilities, and a large Stokes shift. Through nano-precipitation method, Z1 nanoparticles (NPs) also demonstrated high ROS generation (especially type-I ROS) upon 808 nm laser irradiation, leading to efficient mitochondria dysfunction and combined pyroptosis and apoptosis. Moreover, they exhibited exceptional tumor-targeting ability via NIR-II fluorescence imaging (NIR-II FI) and photoacoustic imaging (PAI). Furthermore, Z1 NPs-mediated phototherapy effectively inhibited tumor growth with minimal adverse effects. Our findings offer a promising strategy for cancer therapy, warranting further preclinical investigations in PDT.

3.
Int J Pharm ; 660: 124366, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901541

RESUMEN

This research investigates the modeling of the pharmaceutical roller compaction process, focusing on the application of the Johanson model and the impact of varying roll speeds from 1 to 15 RPM on predictive accuracy of ribbon solid fraction. The classical Johanson's model was integrated with a dwell time parameter leading to an expression of a floating correction factor as a function of roll speed. Through systematic analysis of the effect of different roll speeds on the solid fraction of ribbons composed of microcrystalline cellulose, lactose, and their blends, corrective adjustment to the Johanson model was found to depend on both roll speed and formulation composition. Interestingly, the correction factor demonstrated excellent correlation with the blend's mechanical properties, namely yield stress (Py) and elastic modulus (E0), representative of the deformability of the powder. Validated by a multicomponent drug formulation with ±0.4-1.3 % differences, the findings underscore the utility of this modified mechanistic approach for precise prediction of ribbon solid fraction when Py or E0 is known for a given blend. Hence, this work advances the field by offering early insights for more accurate and controllable roller compaction operations during late-stage pharmaceutical manufacturing.

4.
Int J Biol Macromol ; 273(Pt 2): 132957, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38848837

RESUMEN

Food waste resulting from perishable fruits and vegetables, coupled with the utilization of non-renewable petroleum-based packaging materials, presents pressing challenges demanding resolution. This study addresses these critical issues through the innovative development of a biodegradable functional plastic wrap. Specifically, the proposed solution involves the creation of a κ-carrageenan/carboxymethyl chitosan/arbutin/kaolin clay composite film. This film, capable of rapid in-situ formation on the surfaces of perishable fruits, adeptly conforms to their distinct shapes. The incorporation of kaolin clay in the composite film plays a pivotal role in mitigating water vapor and oxygen permeability, concurrently bolstering water resistance. Accordingly, tensile strength of the composite film experiences a remarkable enhancement, escalating from 20.60 MPa to 34.71 MPa with the incorporation of kaolin clay. The composite film proves its efficacy by preserving cherry tomatoes for an extended period of 9 days at 28 °C through the deliberate delay of fruit ripening, respiration, dehydration and microbial invasion. Crucially, the economic viability of the raw materials utilized in the film, coupled with the expeditious and straightforward preparation method, underscores the practicality of this innovative approach. This study thus introduces an easy and sustainable method for preserving perishable fruits, offering a cost-effective and efficient alternative to petroleum-based packaging materials.


Asunto(s)
Carragenina , Quitosano , Arcilla , Embalaje de Alimentos , Hidrogeles , Caolín , Solanum lycopersicum , Quitosano/química , Quitosano/análogos & derivados , Caolín/química , Carragenina/química , Arcilla/química , Embalaje de Alimentos/métodos , Hidrogeles/química , Resistencia a la Tracción , Conservación de Alimentos/métodos , Frutas/química , Permeabilidad
5.
Poult Sci ; 103(8): 103893, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38870615

RESUMEN

Most of follicles undergo a degenerative process called follicular atresia. This process directly affects the egg production of laying hens and is regulated by external and internal factors. External factors primarily include nutrition and environmental factors. In follicular atresia, internal factors are predominantly regulated at 3 levels; organic, cellular and molecular levels. At the organic level, the hypothalamic-pituitary-ovary (HPO) axis plays an essential role in controlling follicular development. At the cellular level, gonadotropins and cytokines, as well as estrogens, bind to their receptors and activate different signaling pathways, thereby suppressing follicular atresia. By contrast, oxidative stress induces follicular atresia by increasing ROS levels. At the molecular level, granulosa cell (GC) apoptosis is not the only factor triggering follicular atresia. Autophagy is also known to give rise to atresia. Epigenetics also plays a pivotal role in regulating gene expression in processes that seem to be related to follicular atresia, such as apoptosis, autophagy, proliferation, and steroidogenesis. Among these processes, the miRNA regulation mechanism is well-studied. The current review focuses on factors that regulate follicular atresia at organic, cellular and molecular levels and evaluates the interaction network among these levels. Additionally, this review summarizes atretic follicle characteristics, in vitro modeling methods, and factors preventing follicular atresia in laying hens.

6.
Angew Chem Int Ed Engl ; : e202408861, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898541

RESUMEN

Despite various efforts to optimize the near-infrared (NIR) performance of perylene diimide (PDI) derivatives for bio-imaging, convenient and efficient strategies to amplify the fluorescence of PDI derivatives in biological environment and the intrinsic mechanism studies are still lacking. Herein, we propose an alkyl-doping strategy to amplify the fluorescence of PDI derivative-based nanoparticles for improved NIR fluorescence imaging. The developed PDI derivative, OPE-PDI, shows much brighter in n-Hexane (HE) compared with that in other organic media, and the excited state dynamics investigation experimentally elucidates the solvent effect-induced suppression of intermolecular energy transfer and intramolecular nonradiative decay as the underlying mechanism for the fluorescence improvement. Theoretical calculations reveal the lowest reorganization energies of OPE-PDI in HE among various solvents, indicating the effectively suppressed conformational relaxation to support the strongest radiative decay. Inspired by this, an alkyl atmosphere mimicking HE is constructed by incorporating the octadecane into OPE-PDI-based nanoparticles, permitting up to 3-fold fluorescence improvement compared with the counterpart nanoparticles. Owing to the merits of high brightness, anti-photobleaching, and low biotoxicity for the optimal nanoparticles, they have been employed for probing and long-term monitoring of tumor. This work highlights a facile strategy for the fluorescence enhancement of PDI derivative-based nanoparticles.

7.
Phytomedicine ; 130: 155725, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38772181

RESUMEN

BACKGROUND: Bidirectional communication between the gut microbiota and the brain may play an essential role in the cognitive dysfunction associated with chronic sleep deprivation(CSD). Salvia miltiorrhiza Bunge (Danshen, DS), a famous Chinese medicine and functional tea, is extensively used to protect learning and memory capacities, although the mechanism of action remains unknown. PURPOSE: The purpose of this research was to explore the efficacy and the underlying mechanism of DS in cognitive dysfunction caused by CSD. METHODS: DS chemical composition was analyzed by UPLC-QTOF-MS/MS. Forty rats were randomly assigned to five groups (n = 8): control (CON), model (MOD), low- (1.35 g/kg, DSL), high-dose (2.70 g/kg, DSH) DS group, and Melatonin(100 mg/kg, MT) group. A CSD rat model was established over 21 days. DS's effects and the underlying mechanism were explored using the open-field test(OFT), Morris water-maze(MWM), tissue staining(Hematoxylin and Eosin Staining, Nissl staining, Alcian blue-periodic acid SCHIFF staining, and Immunofluorescence), enzyme-linked immunosorbent assay, Western blot, quantitative real-time polymerase chain reaction(qPCR), and 16S rRNA sequencing. RESULTS: We demonstrated that CSD caused gut dysbiosis and cognitive dysfunction. Furthermore, 16S rRNA sequencing demonstrated that Firmicutes and Proteobacteria were more in fecal samples from model group rats, whereas Bacteroidota and Spirochaetota were less. DS therapy, on the contrary hand, greatly restored the gut microbial community, consequently alleviating cognitive impairment in rats. Further research revealed that DS administration reduced systemic inflammation via lowering intestinal inflammation and barrier disruption. Following that, DS therapy reduced Blood Brain Barrier(BBB) and neuronal damage, further decreasing neuroinflammation in the hippocampus(HP). Mechanistic studies revealed that DS therapy lowered lipopolysaccharide (LPS) levels in the HP, serum, and colon, consequently blocking the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products(IL-1ß, IL-6, TNF-α, iNOS, and COX2) in the HP and colon. CONCLUSION: DS treatment dramatically improved spatial learning and memory impairments in rats with CSD by regulating the composition of the intestinal flora, preserving gut and brain barrier function, and reducing inflammation mediated by the LPS-TLR4 signaling pathway. Our findings provide novel insight into the mechanisms by which DS treats cognitive dysfunction caused by CSD.


Asunto(s)
Disfunción Cognitiva , Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Salvia miltiorrhiza , Privación de Sueño , Animales , Salvia miltiorrhiza/química , Privación de Sueño/complicaciones , Privación de Sueño/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Masculino , Medicamentos Herbarios Chinos/farmacología , Ratas , Microbioma Gastrointestinal/efectos de los fármacos , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , FN-kappa B/metabolismo , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos
8.
Chemosphere ; 358: 142204, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704044

RESUMEN

Bisphenol A (BPA) is a typical endocrine disruptor, which can be used as an industrial raw material for the synthesis of polycarbonate and epoxy resins, etc. Recently, BPA has appeared on the list of priority new pollutants for control in various countries and regions. In this study, phenolic resin waste was utilized as a multi-carbon precursor for the electrocatalytic cathode and loaded with cobalt/nitrogen (Co/N) on its surface to form qualitative two-dimensional carbon nano-flakes (Co/NC). The onset potentials, half-wave potentials, and limiting current densities of the nitrogen-doped composite carbon material Co/NC in oxygen saturated 0.5 mol H2SO4 were -0.08 V, -0.61 V, and -0.41 mA cm-2; and those of alkaline conditions were -0.65 V, -2.51 V, and -0.38 mA cm-2, and the corresponding indexes were improved compared with those of blank titanium electrodes, which indicated that the constructed nitrogen-doped composite carbon material Co/NC was superior in oxygen reduction ability. The catalysis by metallic cobalt as well as the N-hybridized active sites significantly improved the efficiency of electrocatalytic degradation of BPA. In the electro-Fenton system, the yield of hydrogen peroxide generated by cathodic reduction of oxygen was 4.012 mg L-1, which effectively promoted the activation of hydroxyl radicals. The removal rate of BPA was above 95% within 180 min. This work provides a new insight for the design and development of novel catalyst to degrade organic pollutants.


Asunto(s)
Compuestos de Bencidrilo , Cobalto , Nitrógeno , Fenoles , Compuestos de Bencidrilo/química , Fenoles/química , Cobalto/química , Catálisis , Nitrógeno/química , Contaminantes Químicos del Agua/química , Electrodos , Carbono/química , Peróxido de Hidrógeno/química , Técnicas Electroquímicas/métodos , Disruptores Endocrinos/química
9.
J Cancer Res Ther ; 20(2): 625-632, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38687933

RESUMEN

OBJECTIVE: To establish a multimodal model for distinguishing benign and malignant breast lesions. MATERIALS AND METHODS: Clinical data, mammography, and MRI images (including T2WI, diffusion-weighted images (DWI), apparent diffusion coefficient (ADC), and DCE-MRI images) of 132 benign and breast cancer patients were analyzed retrospectively. The region of interest (ROI) in each image was marked and segmented using MATLAB software. The mammography, T2WI, DWI, ADC, and DCE-MRI models based on the ResNet34 network were trained. Using an integrated learning method, the five models were used as a basic model, and voting methods were used to construct a multimodal model. The dataset was divided into a training set and a prediction set. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the model were calculated. The diagnostic efficacy of each model was analyzed using a receiver operating characteristic curve (ROC) and an area under the curve (AUC). The diagnostic value was determined by the DeLong test with statistically significant differences set at P < 0.05. RESULTS: We evaluated the ability of the model to classify benign and malignant tumors using the test set. The AUC values of the multimodal model, mammography model, T2WI model, DWI model, ADC model and DCE-MRI model were 0.943, 0.645, 0.595, 0.905, 0.900, and 0.865, respectively. The diagnostic ability of the multimodal model was significantly higher compared with that of the mammography and T2WI models. However, compared with the DWI, ADC, and DCE-MRI models, there was no significant difference in the diagnostic ability of these models. CONCLUSION: Our deep learning model based on multimodal image training has practical value for the diagnosis of benign and malignant breast lesions.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Mamografía , Imagen Multimodal , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Femenino , Diagnóstico Diferencial , Persona de Mediana Edad , Mamografía/métodos , Adulto , Estudios Retrospectivos , Imagen Multimodal/métodos , Anciano , Imagen por Resonancia Magnética/métodos , Curva ROC , Interpretación de Imagen Asistida por Computador/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Mama/diagnóstico por imagen , Mama/patología
10.
BMC Genomics ; 25(1): 374, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627644

RESUMEN

BACKGROUND: Fatty liver hemorrhagic syndrome (FLHS) in the modern poultry industry is primarily caused by nutrition. Despite encouraging progress on FLHS, the mechanism through which nutrition influences susceptibility to FLHS is still lacking in terms of epigenetics. RESULTS: In this study, we analyzed the genome-wide patterns of trimethylated lysine residue 27 of histone H3 (H3K27me3) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq), and examined its association with transcriptomes in healthy and FLHS hens. The study results indicated that H3K27me3 levels were increased in the FLHS hens on a genome-wide scale. Additionally, H3K27me3 was found to occupy the entire gene and the distant intergenic region, which may function as silencer-like regulatory elements. The analysis of transcription factor (TF) motifs in hypermethylated peaks has demonstrated that 23 TFs are involved in the regulation of liver metabolism and development. Transcriptomic analysis indicated that differentially expressed genes (DEGs) were enriched in fatty acid metabolism, amino acid, and carbohydrate metabolism. The hub gene identified from PPI network is fatty acid synthase (FASN). Combined ChIP-seq and transcriptome analysis revealed that the increased H3K27me3 and down-regulated genes have significant enrichment in the ECM-receptor interaction, tight junction, cell adhesion molecules, adherens junction, and TGF-beta signaling pathways. CONCLUSIONS: Overall, the trimethylation modification of H3K27 has been shown to have significant regulatory function in FLHS, mediating the expression of crucial genes associated with the ECM-receptor interaction pathway. This highlights the epigenetic mechanisms of H3K27me3 and provides insights into exploring core regulatory targets and nutritional regulation strategies in FLHS.


Asunto(s)
Anomalías Múltiples , Anomalías Craneofaciales , Dieta con Restricción de Proteínas , Hígado Graso , Trastornos del Crecimiento , Defectos del Tabique Interventricular , Animales , Femenino , Histonas/metabolismo , Pollos/genética , Pollos/metabolismo , Epigénesis Genética , Hígado Graso/genética , Hígado Graso/veterinaria , Hemorragia/genética , Transcriptoma
11.
Int J Pharm ; 655: 124049, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38537921

RESUMEN

In in-process quality monitoring for Continuous Manufacturing (CM) and Critical Quality Attributes (CQA) assessment for Real-time Release (RTR) testing, ultrasonic characterization is a critical technology for its direct, non-invasive, rapid, and cost-effective nature. In quality evaluation with ultrasound, relating a pharmaceutical tablet's ultrasonic response to its defect state and quality parameters is essential. However, ultrasonic CQA characterization requires a robust mathematical model, which cannot be obtained with traditional first principles-based modeling approaches. Machine Learning (ML) using experimental data is emerging as a critical analytical tool for overcoming such modeling challenges. In this work, a novel Deep Neural Network-based ML-driven Non-Destructive Evaluation (ML-NDE) modeling framework is developed, and its effectiveness for extracting and predicting three CQAs, namely defect states, compression force levels, and amounts of disintegrant, is demonstrated. Using a robotic tablet handling experimental rig, each attribute's distinct waveform dataset was acquired and utilized for training, validating, and testing the respective ML models. This study details an advanced algorithmic quality assessment framework for pharmaceutical CM in which automated RTR testing is expected to be critical in developing cost-effective in-process real-time monitoring systems. The presented ML-NDE approach has demonstrated its effectiveness through evaluations with separate (unused) test datasets.


Asunto(s)
Tecnología Farmacéutica , Ultrasonido , Fenómenos Mecánicos , Presión , Comprimidos
12.
ACS Omega ; 9(11): 13252-13261, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38524474

RESUMEN

Low permeability is a key geological factor constraining the development of shale gas, and reservoir modification to improve its permeability is a prerequisite. Controlled shock wave fracturing can induce the formation of complex fractures in reservoirs and is expected to become an important means of reservoir modification. However, the mechanism of controlled shock wave fracturing in shale and the geological engineering control factors are unclear. Therefore, this article reveals the mechanism and effect of shock wave modification through small-scale experiments and large-scale numerical simulations. Results show that as the impact number increases, a significant increase in large fractures and fracture connectivity within the shale samples is observed, while the correlation between the geometric parameters of the fractures and the number of impacts is weak. High-energy input in the model will cause a larger range of damage to the rock, accompanied by a smaller attenuation index, indicating that the speed of energy attenuation plays a decisive role in rock damage. The influence of crustal stress is greater than the speed of energy attenuation, and higher crustal stress will inhibit the formation of fractures. A moderate increase in the number of controllable shock waves is beneficial for the fracturing effect; however, further increasing the loading number of controllable shock waves will weaken the strengthening effect of the fracturing effect.

13.
Mol Pharm ; 21(3): 1466-1478, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38346390

RESUMEN

The interplay between drug and polymer chemistry and its impact on drug release from an amorphous solid dispersion (ASD) is a relatively underexplored area. Herein, the release rates of several drugs of diverse chemistry from hydroxypropyl methylcellulose acetate succinate (HPMCAS)-based ASDs were explored using surface area normalized dissolution. The tendency of the drug to form an insoluble complex with HPMCAS was determined through coprecipitation experiments. The role of pH and the extent of drug ionization were probed to evaluate the role of electrostatic interactions in complex formation. Relationships between the extent of complexation and the drug release rate from an ASD were observed, whereby the drugs could be divided into two groups. Drugs with a low extent of insoluble complex formation with HPMCAS tended to be neutral or anionic and showed reasonable release at pH 6.8 even at higher drug loadings. Cationic drugs formed insoluble complexes with HPMCAS and showed poor release when formulated as an ASD. Thus, and somewhat counterintuitively, a weakly basic drug showed a reduced release rate from an ASD at a bulk solution pH where it was ionized, relative to when unionized. The opposite trend was observed in the absence of polymer for the neat amorphous drug. In conclusion, electrostatic interactions between HPMCAS and lipophilic cationic drugs led to insoluble complex formation, which in turn resulted in ASDs with poor release performance.


Asunto(s)
Metilcelulosa , Metilcelulosa/análogos & derivados , Polímeros , Polímeros/química , Solubilidad , Liberación de Fármacos , Metilcelulosa/química
14.
Adv Mater ; 36(19): e2307081, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38395039

RESUMEN

The accumulation of hyperphosphorylated tau protein aggregates is a key pathogenic event in Alzheimer's disease (AD) and induces mitochondrial dysfunction and reactive oxygen species overproduction. However, the treatment of AD remains challenging owning to the hindrance caused by the blood-brain barrier (BBB) and the complex pathology of AD. Nasal delivery represents an effective means of circumventing the BBB and delivering drugs to the brain. In this study, black phosphorus (BP) is used as a drug carrier, as well as an antioxidant, and loaded with a tau aggregation inhibitor, methylene blue (MB), to obtain BP-MB. For intranasal (IN) delivery, a thermosensitive hydrogel is fabricated by cross-linking carboxymethyl chitosan and aldehyde Pluronic F127 (F127-CHO) micelles. The BP-MB nanocomposite is incorporated into the hydrogel to obtain BP-MB@Gel. BP-MB@Gel could be injected intranasally, providing high nasal mucosal retention and controlled drug release. After IN administration, BP-MB is continuously released and delivered to the brain, exerting synergistic therapeutic effects by suppressing tau neuropathology, restoring mitochondrial function, and alleviating neuroinflammation, thus inducing cognitive improvements in mouse models of AD. These findings highlight a potential strategy for brain-targeted drug delivery in the management of the complex pathologies of AD.


Asunto(s)
Administración Intranasal , Enfermedad de Alzheimer , Quitosano , Disfunción Cognitiva , Hidrogeles , Azul de Metileno , Azul de Metileno/química , Azul de Metileno/uso terapéutico , Azul de Metileno/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Ratones , Hidrogeles/química , Quitosano/química , Quitosano/análogos & derivados , Disfunción Cognitiva/tratamiento farmacológico , Poloxámero/química , Portadores de Fármacos/química , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Micelas , Proteínas tau/metabolismo , Modelos Animales de Enfermedad , Liberación de Fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Nanocompuestos/química , Nanocompuestos/uso terapéutico , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
15.
Appl Environ Microbiol ; 90(3): e0224223, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38358247

RESUMEN

The extensive accumulation of polyethylene terephthalate (PET) has become a critical environmental issue. PET hydrolases can break down PET into its building blocks. Recently, we identified a glacial PET hydrolase GlacPETase sharing less than 31% amino acid identity with any known PET hydrolases. In this study, the crystal structure of GlacPETase was determined at 1.8 Å resolution, revealing unique structural features including a distinctive N-terminal disulfide bond and a specific salt bridge network. Site-directed mutagenesis demonstrated that the disruption of the N-terminal disulfide bond did not reduce GlacPETase's thermostability or its catalytic activity on PET. However, mutations in the salt bridges resulted in changes in melting temperature ranging from -8°C to +2°C and the activity on PET ranging from 17.5% to 145.5% compared to the wild type. Molecular dynamics simulations revealed that these salt bridges stabilized the GlacPETase's structure by maintaining their surrounding structure. Phylogenetic analysis indicated that GlacPETase represented a distinct branch within PET hydrolases-like proteins, with the salt bridges and disulfide bonds in this branch being relatively conserved. This research contributed to the improvement of our comprehension of the structural mechanisms that dictate the thermostability of PET hydrolases, highlighting the diverse characteristics and adaptability observed within PET hydrolases.IMPORTANCEThe pervasive problem of polyethylene terephthalate (PET) pollution in various terrestrial and marine environments is widely acknowledged and continues to escalate. PET hydrolases, such as GlacPETase in this study, offered a solution for breaking down PET. Its unique origin and less than 31% identity with any known PET hydrolases have driven us to resolve its structure. Here, we report the correlation between its unique structure and biochemical properties, focusing on an N-terminal disulfide bond and specific salt bridges. Through site-directed mutagenesis experiments and molecular dynamics simulations, the roles of the N-terminal disulfide bond and salt bridges were elucidated in GlacPETase. This research enhanced our understanding of the role of salt bridges in the thermostability of PET hydrolases, providing a valuable reference for the future engineering of PET hydrolases.


Asunto(s)
Hidrolasas , Tereftalatos Polietilenos , Tereftalatos Polietilenos/metabolismo , Filogenia , Estabilidad de Enzimas , Hidrolasas/metabolismo , Disulfuros , Temperatura
16.
ACS Appl Mater Interfaces ; 16(4): 4420-4429, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38240719

RESUMEN

Near-infrared-II fluorescence imaging (NIR-II FI) has become a powerful imaging technique for disease diagnosis owing to its superiorities, including high sensitivity, high spatial resolution, deep imaging depth, and low background interference. Despite the widespread application of conjugated polymer nanoparticles (CPNs) for NIR-II FI, most of the developed CPNs have quite low NIR-II fluorescence quantum yields based on the energy gap law, which makes high-sensitivity and high-resolution imaging toward deep lesions still a huge challenge. This work proposes a nanoengineering strategy to modulate the size of CPNs aimed at optimizing their NIR-II fluorescence performance for improved NIR-II phototheranostics. By adjusting the initial concentration of the synthesized conjugated polymer, a series of CPNs with different particle sizes are successfully prepared via a nanoprecipitation approach. Results show that the NIR-II fluorescence brightness of CPNs gradually amplifies with decreasing particle size, and the optimal CPNs, NP0.2, demonstrate up to a 2.05-fold fluorescence enhancement compared with the counterpart nanoparticles. With the merits of reliable biocompatibility, high photostability, and efficient light-heat conversion, the optimal NP0.2 has been successfully employed for NIR-II FI-guided photothermal therapy both in vitro and in vivo. Our work highlights an effective strategy of nanoengineering to improve the NIR-II performance of CPNs, advancing the development of NIR-II FI in life sciences.


Asunto(s)
Nanopartículas , Terapia Fototérmica , Polímeros , Nanopartículas/uso terapéutico , Imagen Óptica/métodos , Fototerapia , Línea Celular Tumoral
17.
Appl Environ Microbiol ; 90(1): e0162523, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38168668

RESUMEN

Many Acinetobacter species can grow on n-alkanes of varying lengths (≤C40). AlmA, a unique flavoprotein in these Acinetobacter strains, is the only enzyme proven to be required for the degradation of long-chain (LC) n-alkanes, including C32 and C36 alkanes. Although it is commonly presumed to be a terminal hydroxylase, its role in n-alkane degradation remains elusive. In this study, we conducted physiological, biochemical, and bioinformatics analyses of AlmA to determine its role in n-alkane degradation by Acinetobacter baylyi ADP1. Consistent with previous reports, gene deletion analysis showed that almA was vital for the degradation of LC n-alkanes (C26-C36). Additionally, enzymatic analysis revealed that AlmA catalyzed the conversion of aliphatic 2-ketones (C10-C16) to their corresponding esters, but it did not conduct n-alkane hydroxylation under the same conditions, thus suggesting that AlmA in strain ADP1 possesses Baeyer-Villiger monooxygenase (BVMO) activity. These results were further confirmed by bioinformatics analysis, which revealed that AlmA was closer to functionally identified BVMOs than to hydroxylases. Altogether, the results of our study suggest that LC n-alkane degradation by strain ADP1 possibly follows a novel subterminal oxidation pathway that is distinct from the terminal oxidation pathway followed for short-chain n-alkane degradation. Furthermore, our findings suggest that AlmA catalyzes the third reaction in the LC n-alkane degradation pathway.IMPORTANCEMany microbial studies on n-alkane degradation are focused on the genes involved in short-chain n-alkane (≤C16) degradation; however, reports on the genes involved in long-chain (LC) n-alkane (>C20) degradation are limited. Thus far, only AlmA has been reported to be involved in LC n-alkane degradation by Acinetobacter spp.; however, its role in the n-alkane degradation pathway remains elusive. In this study, we conducted a detailed characterization of AlmA in A. baylyi ADP1 and found that AlmA exhibits Baeyer-Villiger monooxygenase activity, thus indicating the presence of a novel LC n-alkane biodegradation mechanism in strain ADP1.


Asunto(s)
Acinetobacter , Oxigenasas de Función Mixta , Oxigenasas de Función Mixta/metabolismo , Alcanos/metabolismo , Oxidación-Reducción , Acinetobacter/genética
18.
J Hazard Mater ; 465: 133087, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38035524

RESUMEN

It is still limited that how the microalgal toxin okadaic acid (OA) affects the intestinal microbiota in marine fishes. In the present study, adult marine medaka Oryzias melastigma was exposed to the environmentally relevant concentration of OA (5 µg/L) for 10 days, and then recovered in fresh seawater for 10-days depuration. Analysis of taxonomic composition and diversity of the intestinal microbiota, as well as function prediction analysis and histology observation were carried out in this study. Functional prediction analysis indicated that OA potentially affected the development of colorectal cancer, protein and carbohydrate digestion and absorption functions, and development of neurodegenerative diseases like Parkinson's disease, which may be associated with changes in Proteobacteria and Firmicutes in marine medaka. Significant increases of C-reactive protein (CRP) and inducible nitric oxide synthase (iNOS) levels, as well as the changes of histology of intestinal tissue demonstrated that an intestinal inflammation was induced by OA exposure in marine medaka. This study showed that the environmental concentrations of OA could harm to the intestinal microbiota thus threatening the health of marine medaka, which hints that the chemical ecology of microalgal toxins should be paid attention to in future studies.


Asunto(s)
Microbioma Gastrointestinal , Oryzias , Contaminantes Químicos del Agua , Animales , Oryzias/fisiología , Ácido Ocadaico , Ecología
19.
J Med Biochem ; 42(4): 591-599, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-38084239

RESUMEN

Background: To explore the effect of calcium dobesilate combined with hypoglycemic drugs in the treatment of cataract complicated with non-proliferative diabetic retinopathy (NPDR) and its effects on fundus microcirculation, intercellular adhesion molecule 1 (ICAM-1), mono - cyte chemoattractant protein 1 (MCP-1), and macrophage migration inhibitory factor (MIF). Methods: From March 2019 to January 2021, a total of 114 patients with cataract and NPDR were included, and the patients were assigned into the control and the observation groups by random number table method, with 57 cases/group. The control was given hypoglycemic drugs, and the observation was given calcium dobesilate combined therapy. The therapeutic efficacy, blood glucose and blood lipid levels, fluorescein fundus angiography results, fundus microcirculation indexes, retinal neovascularizationrelated factors, and ICAM-1, MCP-1, and MIF levels before and after treatment were compared between the two groups. Results: The total effective rate of treatment in the observation was higher vs. the control (P < 0.05); Fasting blood glucose (FBG), 2 h postprandial blood glucose (2hPG), glycosylated hemoglobin (HbA1c), triglyceride (TG), total cholesterol (TC) and low density lipoprotein (LDL) in the observation after treatment were reduced vs. the control (P < 0.05); The number of micro-hemangiomas in the observation after treatment was less vs. the control, and the area of hemorrhage, the area of exudation and the thickness of the yellow plate were smaller vs. the control (P < 0.05); The resistance index (RI) value of the observation after treatment was lower than the control, and the end-diastolic blood flow velocity (EDV) and the peak systolic blood flow velocity (PSV) of the observation were higher vs. the control (P < 0.05). ICAM-1, MCP-1, MIF, vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF1) in the observation after treatment were reduced vs. the control, but pigment epithelium-derived factor (PEDF) were higher vs. the control (P < 0.05); one case of gastrointestinal reaction took place in the observation, but no adverse reaction occurred in the control, and no clear difference exhibited in the incidence of adverse reactions between the two groups (P > 0.05). Conclusions: Calcium dobesilate combined with hypoglycemic drugs has good clinical efficacy in the treatment of cataract complicated with NPDR, which can effectively reduce the level of blood glucose and blood lipids, reduce inflammation, and mitigate the microcirculation of branch retinal vein occlusion lesions.

20.
Heliyon ; 9(11): e21549, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027809

RESUMEN

Objective: This study evaluated the regulatory effect of Tetramethylpyrazine (TMP) on the spinal cord injury (SCI) rat model and clarified the neuroprotective mechanism of TMP on SCI. Methods: An SCI rat model was generated and treated with TMP injections for two weeks. miR-497-5p and EGFL7 expression changes were evaluated, motor function recovery after SCI was assessed by BBB score test and footprint analysis, lesions of rat spinal cord were assessed by HE staining and TUNEL staining; angiogenesis was assessed by immunoblotting for CD31; inflammatory factor levels were detected by ELISA. EGFL7 was verified as a target of miR-497-5p by bioinformatics website analysis and luciferase reporter gene assay. H2O2-injured neurons were cultured in vitro to explore the effect of TMP. Results: After SCI, miR-497-5p was upregulated while EGFL7 was downregulated in rats. TMP inhibited apoptosis and promoted angiogenesis, nerve regeneration, and repair of nerve defects by reducing miR-497-5p and increasing EGFL7 expression. miR-497-5p targeted EGFL7. In addition, TMP hindered neuronal inflammation and apoptosis induced by H2O2in vitro. Conclusion: TMP promotes angiogenesis by downregulating miR-497-5p to target EGFL7, and promotes nerve regeneration and repair of nerve defects in rats with SCI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA