Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 786
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Lett ; 49(15): 4270-4273, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090911

RESUMEN

We report on a high average power and high repetition rate nanosecond pulsed eye-safe KGW Raman laser intracavity driven by an acousto-optic Q-switched 1342 nm two-crystal Nd:YVO4 laser. Taking advantages of the carefully selected two-composite-laser-crystal configuration, the thoroughly optimized gate-open time of acousto-optic modulator and the ingeniously designed U-shaped resonator, substantial power and efficiency enhancements as well as superior mode matching have been enabled. Under the injected pump power of 64.5 W, the average output powers of the first-Stokes fields at 1496 and 1527 nm can be up to 8.1 and 9.5 W with 25 kHz repetition rate and 3.2 µs gate-open time, respectively, corresponding to the optical power conversion efficiencies of 12.6% and 14.7%. Meantime, the resultant pulse widths are determined to be 4.6 and 6.3 ns with the peak powers of approximately 70 and 60 kW, respectively. The beam quality can be maintained with M2 < 1.5 across the entire output power range.

2.
Sci Adv ; 10(32): eadp6182, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121218

RESUMEN

Endothelial cells (ECs) are highly plastic, capable of differentiating into various cell types. Endothelial-to-mesenchymal transition (EndMT) is crucial during embryonic development and contributes substantially to vascular dysfunction in many cardiovascular diseases (CVDs). While targeting EndMT holds therapeutic promise, understanding its mechanisms and modulating its pathways remain challenging. Using single-cell RNA sequencing on three in vitro EndMT models, we identified conserved gene signatures. We validated original regulators in vitro and in vivo during embryonic heart development and peripheral artery disease. EndMT induction led to global expression changes in all EC subtypes rather than in mesenchymal clusters. We identified mitochondrial calcium uptake as a key driver of EndMT; inhibiting mitochondrial calcium uniporter (MCU) prevented EndMT in vitro, and conditional Mcu deletion in ECs blocked mesenchymal activation in a hind limb ischemia model. Tissues from patients with critical limb ischemia with EndMT features exhibited significantly elevated endothelial MCU. These findings highlight MCU as a regulator of EndMT and a potential therapeutic target.


Asunto(s)
Señalización del Calcio , Células Endoteliales , Transición Epitelial-Mesenquimal , Mitocondrias , RNA-Seq , Análisis de la Célula Individual , Animales , Humanos , Mitocondrias/metabolismo , RNA-Seq/métodos , Ratones , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Canales de Calcio/metabolismo , Canales de Calcio/genética , Isquemia/metabolismo , Isquemia/patología , Calcio/metabolismo , Análisis de Expresión Génica de una Sola Célula
3.
Sci Total Environ ; 949: 175139, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39084357

RESUMEN

Per- and polyfluoroalkyl substances (PFAS), widely utilized in consumer products, have been linked to an increased risk of cardiovascular disease (CVD). With the increasing prevalence of high-fat diet, a common risk factor for CVD, the PFAS exposed populations who consume a high-fat diet will inevitably grow and may have a higher CVD risk. However, the potential toxic effect and mode of action remain elusive. We constructed a mouse model orally exposed to perfluorooctane sulfonate (PFOS), a prototypical PFAS, and fed a high-fat diet. PFOS exposure induced cardiomyopathy and structural abnormalities in the mice heart. Moreover, a characteristic of energy metabolism remodeling from aerobic to anaerobic process was observed. Interestingly, PFOS was rarely detected in heart but showed high level in serum, suggesting an indirect route of action for PFOS-caused cardiac toxicity. We further demonstrated that PFOS-caused circulating inflammation promoted metabolic remodeling and contractile dysfunction in cardiomyocytes. Wherein, PFOS stimulated the release of IL-1ß from circulating proinflammatory macrophages mediated by NF-κB and caspase-1. This study provides valuable data on PFAS-induced cardiac risks associated with exposed populations with increasing high-fat diet consumption, highlighting the significance of indirect pathways in PFOS's impact on the heart, based on the distribution of internal exposure.

4.
J Biophotonics ; : e202400105, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955359

RESUMEN

Nail fold capillaroscopy is an important means of monitoring human health. Panoramic nail fold images improve the efficiency and accuracy of examinations. However, the acquisition of panoramic nail fold images is seldom studied and the problem manifests of few matching feature points when image stitching is used for such images. Therefore, this paper presents a method for panoramic nail fold image stitching based on vascular contour enhancement, which first solves the problem of few matching feature points by pre-processing the image with contrast-constrained adaptive histogram equalization (CLAHE), bilateral filtering (BF), and sharpening algorithms. The panoramic images of the nail fold blood vessels are then successfully stitched using the fast robust feature (SURF), fast library of approximate nearest neighbors (FLANN) and random sample agreement (RANSAC) algorithms. The experimental results show that the panoramic image stitched by this paper's algorithm has a field of view width of 7.43 mm, which improves the efficiency and accuracy of diagnosis.

5.
Adv Sci (Weinh) ; : e2400196, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978353

RESUMEN

Osteoarthritis is a highly prevalent progressive joint disease that still requires an optimal therapeutic approach. Intermittent fasting is an attractive dieting strategy for improving health. Here this study shows that intermittent fasting potently relieves medial meniscus (DMM)- or natural aging-induced osteoarthritic phenotypes. Osteocytes, the most abundant bone cells, secrete excess neuropeptide Y (NPY) during osteoarthritis, and this alteration can be altered by intermittent fasting. Both NPY and the NPY-abundant culture medium of osteocytes (OCY-CM) from osteoarthritic mice possess pro-inflammatory, pro-osteoclastic, and pro-neurite outgrowth effects, while OCY-CM from the intermittent fasting-treated osteoarthritic mice fails to induce significant stimulatory effects on inflammation, osteoclast formation, and neurite outgrowth. Depletion of osteocyte NPY significantly attenuates DMM-induced osteoarthritis and abolishes the benefits of intermittent fasting on osteoarthritis. This study suggests that osteocyte NPY is a key contributing factor in the pathogenesis of osteoarthritis and intermittent fasting represents a promising nonpharmacological antiosteoarthritis method by targeting osteocyte NPY.

6.
Environ Sci Technol ; 58(31): 13986-13994, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38992920

RESUMEN

Previous studies have highlighted the toxicity of pharmaceuticals and personal care products (PPCPs) in plants, yet understanding their spatial distribution within plant tissues and specific toxic effects remains limited. This study investigates the spatial-specific toxic effects of carbamazepine (CBZ), a prevalent PPCP, in plants. Utilizing desorption electrospray ionization mass spectrometry imaging (DESI-MSI), CBZ and its transformation products were observed predominantly at the leaf edges, with 2.3-fold higher concentrations than inner regions, which was confirmed by LC-MS. Transcriptomic and metabolic analyses revealed significant differences in gene expression and metabolite levels between the inner and outer leaf regions, emphasizing the spatial location's role in CBZ response. Notably, photosynthesis-related genes were markedly downregulated, and photosynthetic efficiency was reduced at leaf edges. Additionally, elevated oxidative stress at leaf edges was indicated by higher antioxidant enzyme activity, cell membrane impairment, and increased free fatty acids. Given the increased oxidative stress at the leaf margins, the study suggests using in situ Raman spectroscopy for early detection of CBZ-induced damage by monitoring reactive oxygen species levels. These findings provide crucial insights into the spatial toxicological mechanisms of CBZ in plants, forming a basis for future spatial toxicology research of PPCPs.


Asunto(s)
Carbamazepina , Carbamazepina/toxicidad , Hojas de la Planta/efectos de los fármacos , Estrés Oxidativo , Multiómica
7.
Lancet Planet Health ; 8(7): e476-e488, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38969475

RESUMEN

BACKGROUND: Climate actions targeting combustion sources can generate large ancillary health benefits via associated air-quality improvements. Therefore, understanding the health costs associated with ambient fine particulate matter (PM2·5) from combustion sources can guide policy design for both air pollution and climate mitigation efforts. METHODS: In this modelling study, we estimated the health costs attributable to ambient PM2·5 from six major combustion sources across 204 countries using updated concentration-response models and an age-adjusted valuation method. We defined major combustion sources as the sum of total coal, liquid fuel and natural gas, solid biofuel, agricultural waste burning, other fires, and 50% of the anthropogenic fugitive, combustion, and industrial dust source. FINDINGS: Global long-term exposure to ambient PM2·5 from combustion sources imposed US$1·1 (95% uncertainty interval 0·8-1·5) trillion in health costs in 2019, accounting for 56% of the total health costs from all PM2·5 sources. Comparing source contributions to PM2·5 concentrations and health costs, we observed a higher share of health costs from combustion sources compared to their contribution to population-weighted PM2·5 concentration across 134 countries, accounting for more than 87% of the global population. This disparity was primarily attributed to the non-linear relationship between PM2·5 concentration and its associated health costs. Globally, phasing out fossil fuels can generate 23% higher relative health benefits compared to their share of PM2·5 reductions. Specifically, the share of health costs for total coal was 36% higher than the source's contributions to corresponding PM2·5 concentrations and the share of health costs for liquid fuel and natural gas was 12% higher. Other than fossil fuels, South Asia was expected to show 16% greater relative health benefits than the percentage reduction in PM2·5 from the abatement of solid biofuel emissions. INTERPRETATION: In most countries, targeting combustion sources might offer greater health benefits than non-combustion sources. This finding provides additional rationale for climate actions aimed at phasing out combustion sources, especially those related to fossil fuels and solid biofuel. Mitigation efforts designed according to source-specific health costs can more effectively avoid health costs than strategies that depend solely on the source contributions to overall PM2·5 concentration. FUNDING: The Health Effects Institute, the National Natural Science Foundation of China, and NASA.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Salud Global , Material Particulado , Material Particulado/análisis , Contaminación del Aire/economía , Contaminación del Aire/prevención & control , Humanos , Contaminantes Atmosféricos/análisis , Modelos Teóricos , Exposición a Riesgos Ambientales/prevención & control , Carbón Mineral/economía
8.
Clin Cardiol ; 47(7): e24317, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38953595

RESUMEN

INTRODUCTION: The DESyne novolimus-eluting coronary stent (NES) is a new-generation drug-eluting stent (DES) that is widely used, but clinical data are rarely reported for this stent. We compared the safety and effectiveness of the DESyne NES and the Orsiro bioresorbable polymer sirolimus-eluting stent (SES) in patients undergoing percutaneous coronary intervention (PCI). METHODS: This was a retrospective, single-center, observational study. Between July 2017 and December 2022, patients who presented with chronic or acute coronary syndrome undergoing PCI with DESyne NES or Orsiro SES were consecutively enrolled in the present study. The primary endpoint, major adverse cardiovascular event (MACE), was a composite of cardiovascular death, target-vessel myocardial infarction, or clinically driven target-lesion revascularization. RESULTS: A total of 776 patients (age 68.8 ± 12.2; 75.9% male) undergoing PCI were included. Overall, 231 patients with 313 lesions received NES and 545 patients with 846 lesions received SES. During a follow-up duration of 784 ± 522 days, the primary endpoint occurred in 10 patients (4.3%) in the NES group and in 36 patients (6.6%) in the SES group. After multivariate adjustment, the risk of MACE did not significantly differ between groups (NES vs. SES, hazard ratio 0.74, 95% CI, 0.35-1.55, p = 0.425). The event rate of individual components of the primary endpoint was comparable between the two groups. CONCLUSIONS: Favorable and similar clinical outcomes were observed in patients undergoing PCI with either NES or SES in a medium-term follow-up duration. Future studies with adequately powered clinical endpoints are required for further evaluation.


Asunto(s)
Stents Liberadores de Fármacos , Intervención Coronaria Percutánea , Diseño de Prótesis , Sirolimus , Humanos , Masculino , Femenino , Sirolimus/administración & dosificación , Estudios Retrospectivos , Anciano , Intervención Coronaria Percutánea/métodos , Intervención Coronaria Percutánea/instrumentación , Resultado del Tratamiento , Enfermedad de la Arteria Coronaria/terapia , Factores de Tiempo , Estudios de Seguimiento , Síndrome Coronario Agudo/terapia , Factores de Riesgo , Persona de Mediana Edad , Angiografía Coronaria , Macrólidos
9.
Oncogene ; 43(31): 2405-2420, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38914663

RESUMEN

Gemcitabine resistance is a major obstacle to the effectiveness of chemotherapy in pancreatic ductal adenocarcinoma (PDAC). Therefore, new strategies are needed to sensitize cancer cells to gemcitabine. Here, we constructed gemcitabine-resistant PDAC cells and analyzed them with RNA-sequence. Employing an integrated approach involving bioinformatic analyses from multiple databases, TGFB2 is identified as a crucial gene in gemcitabine-resistant PDAC and is significantly associated with poor gemcitabine therapeutic response. The patient-derived xenograft (PDX) model further substantiates the gradual upregulation of TGFB2 expression during gemcitabine-induced resistance. Silencing TGFB2 expression can enhance the chemosensitivity of gemcitabine against PDAC. Mechanistically, TGFB2, post-transcriptionally stabilized by METTL14-mediated m6A modification, can promote lipid accumulation and the enhanced triglyceride accumulation drives gemcitabine resistance by lipidomic profiling. TGFB2 upregulates the lipogenesis regulator sterol regulatory element binding factor 1 (SREBF1) and its downstream lipogenic enzymes via PI3K-AKT signaling. Moreover, SREBF1 is responsible for TGFB2-mediated lipogenesis to promote gemcitabine resistance in PDAC. Importantly, TGFB2 inhibitor imperatorin combined with gemcitabine shows synergistic effects in gemcitabine-resistant PDAC PDX model. This study sheds new light on an avenue to mitigate PDAC gemcitabine resistance by targeting TGFB2 and lipid metabolism and develops the potential of imperatorin as a promising chemosensitizer in clinical translation.


Asunto(s)
Adenosina , Carcinoma Ductal Pancreático , Desoxicitidina , Resistencia a Antineoplásicos , Gemcitabina , Metabolismo de los Lípidos , Neoplasias Pancreáticas , Factor de Crecimiento Transformador beta2 , Humanos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta2/genética , Resistencia a Antineoplásicos/genética , Animales , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Ratones , Adenosina/análogos & derivados , Adenosina/farmacología , Adenosina/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Transducción de Señal/efectos de los fármacos , Reprogramación Metabólica , Proteína 1 de Unión a los Elementos Reguladores de Esteroles
10.
Plant Commun ; : 101000, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38859586

RESUMEN

Hybrid crops often exhibit increased yield and greater resilience, yet the genomic mechanism(s) underlying hybrid vigor or heterosis remain unclear, hindering our ability to predict the expression of phenotypic traits in hybrid breeding. Here, we generated haplotype-resolved T2T genome assemblies of two pear hybrid varieties, 'Yuluxiang' (YLX) and 'Hongxiangsu' (HXS), which share the same maternal parent but differ in their paternal parents. We then used these assemblies to explore the genome-scale landscape of allele-specific expression (ASE) and create a pangenome graph for pear. ASE was observed for close to 6000 genes in both hybrid cultivars. A subset of ASE genes related to aspects of fruit quality such as sugars, organic acids, and cuticular wax were identified, suggesting their important contributions to heterosis. Specifically, Ma1, a gene regulating fruit acidity, is absent in the paternal haplotypes of HXS and YLX. A pangenome graph was built based on our assemblies and seven published pear genomes. Resequencing data for 139 cultivated pear genotypes (including 97 genotypes sequenced here) were subsequently aligned to the pangenome graph, revealing numerous structural variant hotspots and selective sweeps during pear diversification. As predicted, the Ma1 allele was found to be absent in varieties with low organic acid content, and this association was functionally validated by Ma1 overexpression in pear fruit and calli. Overall, these results reveal the contributions of ASE to fruit-quality heterosis and provide a robust pangenome reference for high-resolution allele discovery and association mapping.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38944271

RESUMEN

OBJECTIVE: This study aimed to compare the difference in perioperative outcomes and prognosis between neoadjuvant immunochemotherapy and neoadjuvant chemoradiotherapy for locally advanced esophageal squamous cell carcinoma. METHODS: The patients with locally advanced esophageal squamous cell carcinoma receiving neoadjuvant immunochemotherapy or neoadjuvant chemoradiotherapy were identified from a prospectively maintained database at Zhongshan Hospital of Fudan University between January 2018 and March 2022. Propensity score matching was performed to balance the 2 groups. RESULTS: A total of 124 patient pairs were enrolled in the final analysis. The complete pathological response rate (20.2% vs 29.0%, P = .140) was similar in the 2 groups, whereas the lower major pathological response rate (44.4% vs 61.3%, P = .011) was observed in the neoadjuvant immunochemotherapy group. Neoadjuvant immunochemotherapy was associated with a lower rate of adverse events (42.7% vs 55.6%, P = .047) without additional postoperative complications (38.7% vs 35.5%, P = .693). The neoadjuvant immunochemotherapy group had lower distant metastasis (6.5% vs 16.1%, P = .027) and overall recurrence (11.3% vs 23.4%, P = .019) in the postoperative 1 year. Also, neoadjuvant immunochemotherapy was associated with better progression-free survival (hazard ratio, 0.50; 95% CI, 0.32-0.77; P = .002). Cox proportional hazard analysis showed that neoadjuvant immunochemotherapy (univariable: hazard ratio, 0.55; 95% CI, 0.37-0.82; P = .003; multivariable: hazard ratio, 0.44; 95% CI, 0.29-0.65; P < .001) was one of the independent prognostic factors for progression-free survival. The 2 groups had similar overall survival (hazard ratio, 0.62; 95% CI, 0.36-1.09; P = .094) at the latest follow-up. CONCLUSIONS: This retrospective study showed that neoadjuvant immunochemotherapy was safe and effective for patients with locally advanced esophageal squamous cell carcinoma. Further verification is needed in randomized controlled trials.

12.
Cell ; 187(15): 3936-3952.e19, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936359

RESUMEN

Duplication is a foundation of molecular evolution and a driver of genomic and complex diseases. Here, we develop a genome editing tool named Amplification Editing (AE) that enables programmable DNA duplication with precision at chromosomal scale. AE can duplicate human genomes ranging from 20 bp to 100 Mb, a size comparable to human chromosomes. AE exhibits activity across various cell types, encompassing diploid, haploid, and primary cells. AE exhibited up to 73.0% efficiency for 1 Mb and 3.4% for 100 Mb duplications, respectively. Whole-genome sequencing and deep sequencing of the junctions of edited sequences confirm the precision of duplication. AE can create chromosomal microduplications within disease-relevant regions in embryonic stem cells, indicating its potential for generating cellular and animal models. AE is a precise and efficient tool for chromosomal engineering and DNA duplication, broadening the landscape of precision genome editing from an individual genetic locus to the chromosomal scale.


Asunto(s)
Duplicación de Gen , Edición Génica , Genoma Humano , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , ADN/genética , Animales , Células Madre Embrionarias/metabolismo , Cromosomas Humanos/genética
13.
J Med Chem ; 67(13): 10743-10773, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38919032

RESUMEN

Beta-1,3-glucuronosyltransferase (B3GAT3), overexpressed in hepatocellular carcinoma (HCC) and negatively correlated to prognosis, is a promising target for cancer therapy. Currently, no studies have reported small molecule inhibitors of B3GAT3. In this study, we designed and synthesized a series of small-molecule inhibitors of B3GAT3 through virtual screening and structure optimization. The lead compound TMLB-C16 exhibited potent B3GAT3 inhibitory activity (KD = 3.962 µM) by effectively suppressing proliferation and migration, and inducing cell cycle arrest and apoptosis in MHCC-97H (IC50= 6.53 ± 0.18 µM) and HCCLM3 (IC50= 6.22 ± 0.23 µM) cells. Furthermore, compound TMLB-C16 demonstrated favorable pharmacokinetic properties with a relatively high bioavailability of 68.37%. It significantly inhibited tumor growth in both MHCC-97H and HCCLM3 xenograft tumor models without causing obvious toxicity. These results indicate that compound TMLB-C16 is an effective small molecule inhibitor of B3GAT3, providing a basis for the future development of B3GAT3-targeted drugs.


Asunto(s)
Acetamidas , Antineoplásicos , Carcinoma Hepatocelular , Proliferación Celular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Acetamidas/química , Acetamidas/farmacología , Acetamidas/síntesis química , Acetamidas/uso terapéutico , Ratones , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Ratones Desnudos , Descubrimiento de Drogas , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto , Simulación del Acoplamiento Molecular , Masculino , Movimiento Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/síntesis química
14.
J Sci Food Agric ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828647

RESUMEN

BACKGROUND: In response to growing concerns regarding heavy metal contamination in food, particularly chromium (Cr)(VI) contamination, this study presented a simple, sensitive and practical method for Cr(VI) detection. RESULTS: A magnetic separation-based capture-exponential enrichment ligand system evolution (SELEX) method was used to identify and characterize DNA aptamers with a high affinity for Cr(VI). An aptamer, Cr-15, with a dissociation constant (Kd) of 4.42 ± 0.44 µmol L-1 was obtained after only eight rounds of selection. Further innovative methods combining molecular docking, dynamic simulation and thermodynamic analysis revealed that CrO4 2- could bind to the 19th and 20th guanine bases of Cr-15 via hydrogen bonds. Crucially, a label-free fluorometric aptasensor based on SYBR Green I was successfully constructed to detect CrO4 2-, achieving a linear detection range of 60-300 nmol L-1 with a lower limit of detection of 44.31 nmol L-1. Additionally, this aptasensor was able to quantitatively detect CrO4 2- in grapes and broccoli within 40 min, with spike recovery rates ranging from 89.22% to 108.05%. The designed fluorometric aptasensor exhibited high selectivity and could detect CrO4 2- in real samples without sample processing or target pre-enrichment. CONCLUSION: The aptasensor demonstrated its potential as a reliable tool for monitoring Cr(VI) contamination in fruit and vegetable products. © 2024 Society of Chemical Industry.

15.
Opt Express ; 32(12): 20852-20861, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38859455

RESUMEN

We report on a high-power and narrow-linewidth nanosecond pulsed intracavity crystalline Raman laser at 1.7 µm. Driven by an acousto-optically Q-switched 1314 nm two-crystal Nd:YLF laser, the highly efficient cascaded YVO4 Raman laser at 1715nm was obtained within the well-designed L-shaped resonator. Thanks to the absence of spatial hole burning in the stimulated Raman scattering process, significant spectral purification of second-Stokes radiation was observed by incorporating a fused silica etalon in the high-Q fundamental cavity. Under the repetition rate of 4 kHz, the highest average output power for single longitudinal mode operation was up to 2.2 W with the aid of precision vibration isolation and precision temperature controlling, corresponding to the pulse duration of ∼2.8 ns and the spectral linewidth of ∼330 MHz. Further increasing the launched pump power, the second-Stokes laser tended toward be always multimode, and the maximum average output power amounted to 4.8 W with the peak power of ∼0.8 MW and the spectral linewidth of ∼0.08 nm. The second-Stokes emission was near diffraction limited with M2 < 1.4 across the whole pump power range.

16.
Heliyon ; 10(10): e30985, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38826758

RESUMEN

Objectives: FGFR4-variant and wild-type colorectal cancer (CRC) organoids were developed to investigate the effects of FGFR4-targeted drugs, including FGFR4-IN and erdafitinib, on CRC and their possible molecular mechanism. Methods: Clinical CRC tissues were collected, seven CRC organoids were developed, and whole exome sequencing (WES) was performed. CRC organoids were cultured and organoid drug sensitivity studies were conducted. Finally, an FGFR4-variant (no wild-type) CRC patient-derived orthotopic xenograft mouse model was developed. Western blot measured ERK/AKT/STAT3 pathway-related protein levels. Results: WES results revealed the presence of FGFR4-variants in 5 of the 7 CRC organoids. The structural organization and integrity of organoids were significantly altered under the influence of targeted drugs (FGFR4-IN-1 and erdafitinib). The effects of FGFR4 targeted drugs were not selective for FGFR4 genotypes. FGFR4-IN-1 and erdafitinib significantly reduced the growth, diameter, and Adenosine Triphosphate (ATP) activity of organoids. Furthermore, chemotherapeutic drugs, including 5-fluorouracil and cisplatin, inhibited FGFR4-variant and wild-type CRC organoid activity. Moreover, the tumor volume of mice was significantly reduced at week 6, and p-ERK1/2, p-AKT, and p-STAT3 levels were down-regulated following FGFR4-IN-1 and erdafitinib treatment. Conclusions: FGFR4-targeted and chemotherapeutic drugs inhibited the activity of FGFR4-variant and wild-type CRC organoids, and targeted drugs were more effective than chemotherapeutic drugs at the same concentration. Additionally, FGFR4 inhibitors hindered tumorigenesis in FGFR4-variant CRC organoids through ERK1/2, AKT, and STAT3 pathways. However, no wild-type control was tested in this experiment, which need further confirmation in the next study.

17.
Food Sci Nutr ; 12(6): 4173-4184, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38873468

RESUMEN

Diabetic nephropathy (DN) is a primary diabetic complication ascribed to the pathological changes in renal microvessels. This study investigated the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch ECH associating protein (Keap1)/antioxidant response element (ARE) signaling pathway impact of chitooligosaccharides (COS) with a certain degree of polymerization (DP) on DN mouse models and high glucose-damaged human kidney 2 (HK-2) cells. The findings indicated that COS effectively reduced the renal function indexes (uric acid [UA], urinary albumin excretion rate [UAER], urine albumin-to-creatinine ratio [UACR], blood urea nitrogen [BUN], and creatinine [Cre]) of DN mice. It increased (p < .05) the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) antioxidant enzyme activity in the serum and kidneys, and decreased (p < .05) the malondialdehyde (MDA) content. The mechanistic investigation showed that COS significantly increased (p < .05) Nrf2 and downstream target gene (GCLM, GCLC, HO-1, and NQO-1) expression, and substantially decreased (p < .05) Keap1 expression. The protein level was consistent with the messenger RNA (mRNA) level in in vitro and in vivo models. The docking data indicated that COS and Keap1 protein binding included six hydrogen bond formation processes (Gly364, Arg415, Arg483, His436, Ser431, and Arg380). The COS intervention mechanism may be related to the Nrf2/Keap1/ARE antioxidant pathway. Therefore, it provides a scientific basis for COS application in developing special medical food for DN patients.

18.
Brain ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916992

RESUMEN

Cell-based therapies hold great promise for brain repair after stroke. While accumulating evidence confirms the preclinical and clinical benefits of cell therapies, the underlying mechanisms by which they promote brain repair remain unclear. Here, we briefly review endogenous mechanisms of brain repair after ischemic stroke and then focus on how different stem and progenitor cell sources can promote brain repair. Specifically, we examine how transplanted cell grafts contribute to improved functional recovery either through direct cell replacement or by stimulating endogenous repair pathways. Additionally, we discuss recently implemented preclinical refinement methods, such as preconditioning, microcarriers, genetic safety switches, and universal (immune evasive) cell transplants, as well as the therapeutic potential of these pharmacologic and genetic manipulations to further enhance the efficacy and safety of cell therapies. By gaining a deeper understanding of post-ischemic repair mechanisms, prospective clinical trials may be further refined to advance post-stroke cell therapy to the clinic.

19.
Food Chem ; 454: 139734, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810454

RESUMEN

A fluorescent hybrid film composed of nitrogen-doped graphene quantum dots (N-GQDs) loaded on halloysite nanotubes (HNTs) (N-GQDs/HNTs nanocomposite) as a sensitive element and polyvinyl alcohol (PVA) as a film-forming matrix was designed for freshness detection. The PVA-N-GQDs/HNTs hybrid film exhibited significantly enhanced fluorescence attributed to the loading of N-GQDs onto the surface of HNTs through electrostatic interactions and hydrogen bonding, effectively reducing their aggregation. The fluorescence of the hybrid film could be quenched by ammonia via photoinduced electron transfer (PET), with good linearity in the range of 20 ppm to 500 ppm ammonia and a limit of detection (LOD) of 0.63 ppm. In addition, the hybrid film was applied to monitor the freshness of seawater fish and freshwater fish stored at refrigeration and room temperature to evaluate the practicality of this approach. The developed hybrid film showed promise for nondestructive and on-site monitoring of fish spoilage.


Asunto(s)
Amoníaco , Peces , Grafito , Nanotubos , Alcohol Polivinílico , Puntos Cuánticos , Alimentos Marinos , Puntos Cuánticos/química , Grafito/química , Nanotubos/química , Animales , Alcohol Polivinílico/química , Amoníaco/química , Amoníaco/análisis , Alimentos Marinos/análisis , Fluorescencia , Arcilla/química , Embalaje de Alimentos/instrumentación , Límite de Detección , Espectrometría de Fluorescencia , Contaminación de Alimentos/análisis
20.
Heliyon ; 10(10): e31137, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38778969

RESUMEN

Background: The prevalence of breast cancer (BRCA), which is common among women, is on the rise. This study applied network pharmacology to explore the potential mechanism of action of herba sarcandrae in BRCA and construct a prognostic signature composed of inflammation-related genes. Methods: The active ingredients of herba sarcandrae were screened using the SymMap, TCMID, and TCMSP platforms, and the molecular targets were determined in the UniProt database. The "drug-active compound-potential target" network was established with Cytoscape 3.7.2. The molecular targets were subjected to disease ontology, gene ontology (GO), and Kyoto Encyclopedia of Genes (KEGG) analyses. AutoDock software was used for molecular docking. Differentially expressed genes (DEGs) related to inflammation were obtained from the BRCA Cancer Genome Atlas (TCGA) database. In the training cohort, the univariate Cox regression model was applied to preliminarily screen prognostic genes. A multigene signature was built by the least absolute shrinkage and selection operator (LASSO) regression model, followed by validation through Kaplan‒Meier, Cox, and receiver operating characteristic (ROC) analyses. Results: Forty-one active compounds were identified, and 265 therapeutic targets for herba sarcandrae were predicted. GO enrichment results revealed significant enrichment of biological processes, such as response to xenobiotic stimuli, response to nutrient levels, and response to lipopolysaccharide. KEGG analysis revealed significant enrichment of pathways such as AGE-RAGE and chemical carcinogenesis receptor activation signaling pathways. In addition, the herbs Marc-Andre and rutin were shown to mediate BRCA cell proliferation and apoptosis via the interferon regulatory factor 1 (IRF1)/signal transducer and activator of transcription 3 (STAT3)/programmed death-ligand 1 (PD-L1) pathway. Sixteen inflammatory signatures, including BST2, GPR132, IL12B, IL18, IL1R1, IL2RB, IRF1, and others, were constructed, and the risk score was found to be a strong independent prognostic factor for overall survival in BRCA patients. The 16-inflammation signature was associated with several clinical features (age, clinical stage, T, and N classifications) and could reflect immune cell infiltration in tumor microenvironments with different immune cells. Conclusions: Herba sarcandrae and rutin were shown to mediate BRCA cell proliferation and apoptosis via the IRF1/STAT3/PD-L1 pathway, and the 16-member inflammatory signature might be a novel biomarker for predicting BRCA patient prognosis, providing more accurate guidance for clinical treatment prognosis evaluation and having important reference value for individualized treatment selection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA