Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Evol Appl ; 17(9): e13686, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39247090

RESUMEN

The unprecedented habitat fragmentation or loss has threatened the existence of many species. Therefore, it is essential to understand whether and how these species can pace with the environmental changes. Recent advantages in landscape genomics enabled us to identify molecular signatures of adaptation and predict how populations will respond to changing environments, providing new insights into the conservation of species. Here, we investigated the pattern of neutral and putative adaptive genetic variation and its response to changing environments in a tertiary relict tree species, Taxus cuspidata Sieb. et Zucc, which is distributed in northeast China and adjacent regions. We investigated the pattern of genetic diversity and differentiation using restriction site-associated DNA sequencing (RAD-seq) and seven nuclear microsatellites (nSSRs) datasets. We further explored the endangered mechanism, predicted its vulnerability in the future, and provided guidelines for the conservation and management of this species. RAD-seq identified 16,087 single nucleotide polymorphisms (SNPs) in natural populations. Both the SNPs and nSSRs datasets showed high levels of genetic diversity and low genetic differentiation in T. cuspidata. Outlier detection by F ST outlier analysis and genotype-environment associations (GEAs) revealed 598 outlier SNPs as putative adaptive SNPs. Linear redundancy analysis (RDA) and nonlinear gradient forest (GF) showed that the contribution of climate to genetic variation was greater than that of geography, and precipitation played an important role in putative adaptive genetic variation. Furthermore, the genetic offset and risk of non-adaptedness (RONA) suggested that the species at the northeast edge may be more vulnerable in the future. These results suggest that although the species has maintained high current genetic diversity in the face of recent habitat loss and fragmentation, future climate change is likely to threaten the survival of the species. Temperature (Bio03) and precipitation (Prec05) variables can be potentially used as predictors of response of T. cuspidata under future climate. Together, this study provides a theoretical framework for conservation and management strategies for wildlife species in the context of future climate change.

2.
Front Plant Sci ; 15: 1390069, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828216

RESUMEN

Root rot is a major disease that causes decline of alfalfa production, and Fusarium is a major pathogen associated with root rot. In this study, 13 Fusarium isolates were obtained from alfalfa with root rot in Gansu Province, the major alfalfa production region in China. The isolates were characterized by molecular genotyping (ITS, TEF 1-α and RPB2 fragments) and identified as six species, which included the F. acuminatum, F. incarnatum, F. oxysporum, F. proliferatum, F. redolens, and F. solani. We found that their morphology varied significantly at both the macro- and micro-levels, even for those from the same species. We developed a low cost and fast pathogenicity test and revealed that all isolates were pathogenic to alfalfa with typical root rot symptoms such as leaf yellowing and brown lesions on the root and stem. However, the virulence of the isolates differed. We also found that the conidia of all isolates germinated as early as 24 hours post inoculation (hpi), while hyphae colonized the root extensively and invaded the xylem vessel by 48 hpi. Together our results reveal that different virulent Fusarium isolates use a similar invasion strategy in alfalfa. This natural plant-fungus pathosystem is intriguing and warrants further examination, particularly with regard to efforts aimed at mitigating the impact of multiple similar vascular pathogens on infected alfalfa plants.

3.
Plant Dis ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616399

RESUMEN

Oaks are the most abundant trees in naturally regenerated forests in China, play a crucial role in preventing soil erosion and maintaining ecological stability (Du et al. 2022). Quercus guyavifolia H. Léveillé (Fagaceae family, Subgenus Cerris, section Ilex), is endemic in China, distributed in the southeastern boundary of the Qinghai-Tibet Plateau, with elevations from 2, 000 - 4, 500 m a.s.l. (Denk et al. 2018; Sun et al. 2016). Powdery mildew is a prevalent disease of oaks with up to 60% of foliage infection, which can induce leaf necrosis or deformation and might contribute to oak decline (Marçais and Desprez-Loustau 2014). In September 2023, we found leaves of Q. guyavifolia near Yunnan Baima Snow Mountain covered with white fungal colonies. Diseased Q. guyavifolia plants were transplanted into a greenhouse at Yunnan University for pathogenicity tests. Conidia from diseased plants were blown into twenty healthy Q. guyavifolia seedlings by cold air blower and five non-inoculated healthy seedlings were used as control. The inoculated seedlings developed powdery mildew symptoms within ten days on both sides of the leaves. Trypan blue staining was used to identify the pathogen that infects Q. guyavifolia (Xiao et al. 2017). Microscopic examination revealed abundant conidia and extensive branched hyphae on leaves, similar to the characteristics of powdery mildew fungi. The mean length and width of conidia were 29.06 ± 3.96 × 9.52 ± 1.36 µm (n = 50). We collected fungi (YNBAIMAXS01) and extracted genomic DNA from five diseased plants (from the same location) using the CTAB method. We amplified and sequenced the ITS (Gardes and Bruns, 1993), MS294, and MS447 (two nuclear protein-encoding genes; Feau et al. 2011; GenBank numbers: PP079015, PP083693, PP083694). BLAST analysis revealed 100% identity of above three sequences with the ITS of Erysiphe quercicola isolate DACA010 (GenBank accession MT569439), MS294 of E. quercicola isolate GEM09_11_FRTB1 (GenBank accession KY348509), and MS447 of E. quercicola isolate A1I1.5 (GenBank accession KY466619). Therefore, the isolate YNBAIMAXS01 was identified as E. quercicola based on its morphological and molecular characteristics. Sequences from the above three regions for YNBAIMAXS01 and five Erysiphe species were used to construct a Maximum likelihood (ML) tree. In addition, we constructed a ML tree using only the ITS region of YNBAIMAXS01 and eight Erysiphe species from GenBank to better distinguish E. quercicola from these species. Both trees were constructed using MEGA X with K2 + G as best model. The ML trees confirmed the powdery mildew fungi isolated from Q. guyavifolia is closely related to E. alphitoides. To date, thirty-four powdery mildew species belonging to genus Erysiphe have been found affecting Quercus and nine oak species can be infected by E. quercicola (https://fungi.ars.usda.gov/). To our knowledge, this is the first report of powdery mildew caused by E. quercicola on Q. guyavifolia, thus the development of control strategies and disease management is urgently needed.

4.
Ecol Evol ; 14(2): e11032, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38357593

RESUMEN

Plant phenotypic characteristics, especially leaf morphology of leaves, are an important indicator for species identification. However, leaf shape can be extraordinarily complex in some species, such as oaks. The great variation in leaf morphology and difficulty of species identification in oaks have attracted the attention of scientists since Charles Darwin. Recent advances in discrimination technology have provided opportunities to understand leaf morphology variation in oaks. Here, we aimed to compare the accuracy and efficiency of species identification in two closely related deciduous oaks by geometric morphometric method (GMM) and deep learning using preliminary identification of simple sequence repeats (nSSRs) as a prior. A total of 538 Asian deciduous oak trees, 16 Q. aliena and 23 Q. dentata populations, were firstly assigned by nSSRs Bayesian clustering analysis to one of the two species or admixture and this grouping served as a priori identification of these trees. Then we analyzed the shapes of 2328 leaves from the 538 trees in terms of 13 characters (landmarks) by GMM. Finally, we trained and classified 2221 leaf-scanned images with Xception architecture using deep learning. The two species can be identified by GMM and deep learning using genetic analysis as a priori. Deep learning is the most cost-efficient method in terms of time-consuming, while GMM can confirm the admixture individuals' leaf shape. These various methods provide high classification accuracy, highlight the application in plant classification research, and are ready to be applied to other morphology analysis.

5.
Microbiol Resour Announc ; 12(11): e0055423, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37812076

RESUMEN

We report the complete genome of Agrobacterium fabrum ARqua1 generated from Oxford Nanopore and Illumina sequencing. The genome of ARqua1 has a total length of 5,714,310 bp, comprising a circular chromosome, a linear chromosome, and two plasmids. In total, 5,446 genes were predicted, of which 5,288 were annotated.

6.
Sci China Life Sci ; 63(12): 1918-1927, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32382982

RESUMEN

CRISPR/Cas systems, especially CRISPR/Cas9, generally result in small insertions/deletions, which are unlikely to eliminate the functions of regulatory and other non-coding sequences. To generate larger genomic deletions usually requires the use of pairs of guide RNAs. Here we show that it is possible to create such deletions with a single guide RNA by fusing Cas9 or Cas12a with T5 exonuclease (T5exo). These fusion constructs were found to increase both the frequency and size of deletions at target loci in rice protoplasts and seedlings. Moreover, the genome editing efficiencies of Cas9 and Cas12a were also enhanced by fusion with T5 exonuclease. These T5exo-Cas fusions expand the CRISPR toolbox, and facilitate knockout of regulatory and non-coding DNA sequences. From a wider standpoint, our results suggest a general strategy for producing larger deletions using other Cas nucleases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Edición Génica/métodos , Proteínas Bacterianas/genética , Proteína 9 Asociada a CRISPR/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , ADN de Plantas/genética , ADN de Plantas/metabolismo , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Genoma de Planta/genética , Mutación INDEL , Oryza/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/metabolismo
7.
Genome Biol ; 20(1): 145, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31349852

RESUMEN

The CRISPR/Cas9 system is unable to edit all targetable genomic sites with full efficiency in vivo. We show that Cas9-mediated editing is more efficient in open chromatin regions than in closed chromatin regions in rice. A construct (Cas9-TV) formed by fusing a synthetic transcription activation domain to Cas9 edits target sites more efficiently, even in closed chromatin regions. Moreover, combining Cas9-TV with a proximally binding dead sgRNA (dsgRNA) further improves editing efficiency up to several folds. The use of Cas9-TV/dsgRNA thus provides a novel strategy for obtaining efficient genome editing in vivo, especially at nuclease-refractory target sites.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Cromatina/química , Edición Génica , Activación Transcripcional , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Oryza/genética , ARN/genética , Transactivadores/genética
8.
Philos Trans R Soc Lond B Biol Sci ; 374(1767): 20180322, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30967029

RESUMEN

Diseases severely affect crop yield and quality, thereby threatening global food security. Genetic improvement of plant disease resistance is essential for sustainable agriculture. Genome editing has been revolutionizing plant biology and biotechnology by enabling precise, targeted genome modifications. Editing provides new methods for genetic improvement of plant disease resistance and accelerates resistance breeding. Here, we first summarize the challenges for breeding resistant crops. Next, we focus on applications of genome editing technology in generating plants with resistance to bacterial, fungal and viral diseases. Finally, we discuss the potential of genome editing for breeding crops that present novel disease resistance in the future. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.


Asunto(s)
Productos Agrícolas/genética , Edición Génica/métodos , Genoma de Planta , Fitomejoramiento/métodos , Enfermedades de las Plantas/prevención & control , Resistencia a la Enfermedad/genética , Edición Génica/instrumentación , Enfermedades de las Plantas/genética
9.
Front Genet ; 10: 1295, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010180

RESUMEN

Inverted repeat (IR) regions in the plastomes from land plants induce homologous recombination, generating isomeric plastomes. While the plastomes of Taxaceae species often lose one of the IR regions, considerable isomeric plastomes were created in Taxaceae species with a hitherto unclarified mechanism. To investigate the detailed mechanism underpinning the IR-independent genesis of plastomic diversity, we sequenced four Taxaceae plastomes, including Taxus cuspidata Siebold & Zuccarini, Taxus fauna Nan Li & R. R. Mill, and two individuals of Taxus wallichiana Zuccarini. Then we compared these structures with those of previously reported Taxaceae plastomes. Our analysis identified four distinct plastome forms that originated from the rearrangements of two IR-flanking inverted fragments. The presence of isomeric plastomes was then verified in T. cuspidata individuals. Both rearrangement analyses and phylogenetic results indicated that Taxaceae were separated into two clades, one including Taxus and Pseudotaxus and another formed by Amentotaxus and Torreya. Our reconstructed scenario suggests that the minimum number of inversion events required for the transformation of the plastome of Cephalotaxus oliveri Masters into the diversified Taxaceae plastomes ranged from three to six. To sum up, our study reveals a distinct pattern and the mechanism driving the structural diversification of Taxaceae plastomes, which will advance our understanding of the maintenance of plastomic diversity and complexity in conifers.

10.
Mol Plant Microbe Interact ; 32(2): 255-266, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30124364

RESUMEN

Stomata are leaf pores that regulate gas exchange and water transpiration in response to environmental cues. They also function in innate immunity by limiting pathogen entry through actively closing in so-called stomatal defense. However, roles of stomata in plant disease resistance are not fully elucidated, especially in monocots. Here, we report that non-race specific resistance of the rice abscisic acid-deficient mutant Osaba1 to Xanthomonas oryzae pv. oryzae is due to increased stomatal conductance. Reducing stomatal conductance in the Osaba1 mutant increases its susceptibility to X. oryzae pv. oryzae. Artificial opening of stomata in wild-type plants leads to enhanced resistance to X. oryzae pv. oryzae. The rice mutant es1-1 with constitutively higher stomatal conductance exhibits strong resistance to X. oryzae pv. oryzae. Additionally, Osaba1 and es1-1 are resistant to X. oryzae pv. oryzicola. The data support that open stomata confer postinvasive resistance against bacterial pathogens in rice, and such resistance probably results from decreased leaf water potential. Our findings reveal a novel role of stomata in plant immunity through modulation of leaf water status, which provides physiological insight into the interactions between plant, pathogen, and environment.


Asunto(s)
Resistencia a la Enfermedad , Oryza , Hojas de la Planta , Estomas de Plantas , Xanthomonas , Interacciones Huésped-Patógeno , Humanos , Oryza/microbiología , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Xanthomonas/fisiología
11.
Int J Mol Sci ; 19(4)2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29601535

RESUMEN

Quercus is an economically important and phylogenetically complex genus in the family Fagaceae. Due to extensive hybridization and introgression, it is considered to be one of the most challenging plant taxa, both taxonomically and phylogenetically. Quercus aquifolioides is an evergreen sclerophyllous oak species that is endemic to, but widely distributed across, the Hengduanshan Biodiversity Hotspot in the Eastern Himalayas. Here, we compared the fully assembled chloroplast (cp) genome of Q. aquifolioides with those of three closely related species. The analysis revealed a cp genome ranging in size from 160,415 to 161,304 bp and with a typical quadripartite structure, composed of two inverted repeats (IRs) separated by a small single copy (SSC) and a large single copy (LSC) region. The genome organization, gene number, gene order, and GC content of these four Quercus cp genomes are similar to those of many angiosperm cp genomes. We also analyzed the Q. aquifolioides repeats and microsatellites. Investigating the effects of selection events on shared protein-coding genes using the Ka/Ks ratio showed that significant positive selection had acted on the atpF gene of Q. aquifolioides compared to two deciduous oak species, and that there had been significant purifying selection on the atpF gene in the chloroplast of evergreen sclerophyllous oak trees. In addition, site-specific selection analysis identified positively selected sites in 12 genes. Phylogenetic analysis based on shared protein-coding genes from 14 species defined Q. aquifolioides as belonging to sect. Heterobalanus and being closely related to Q. rubra and Q. aliena. Our findings provide valuable genetic information for use in accurately identifying species, resolving taxonomy, and reconstructing the phylogeny of the genus Quercus.


Asunto(s)
Quercus/genética , Análisis de Secuencia de ADN/métodos , Cloroplastos/genética , Evolución Molecular , Genoma del Cloroplasto/genética , Filogenia
12.
Nat Protoc ; 13(3): 413-430, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29388938

RESUMEN

This protocol is an extension to: Nat. Protoc. 9, 2395-2410 (2014); doi:10.1038/nprot.2014.157; published online 18 September 2014In recent years, CRISPR/Cas9 has emerged as a powerful tool for improving crop traits. Conventional plant genome editing mainly relies on plasmid-carrying cassettes delivered by Agrobacterium or particle bombardment. Here, we describe DNA-free editing of bread wheat by delivering in vitro transcripts (IVTs) or ribonucleoprotein complexes (RNPs) of CRISPR/Cas9 by particle bombardment. This protocol serves as an extension of our previously published protocol on genome editing in bread wheat using CRISPR/Cas9 plasmids delivered by particle bombardment. The methods we describe not only eliminate random integration of CRISPR/Cas9 into genomic DNA, but also reduce off-target effects. In this protocol extension article, we present detailed protocols for preparation of IVTs and RNPs; validation by PCR/restriction enzyme (RE) and next-generation sequencing; delivery by biolistics; and recovery of mutants and identification of mutants by pooling methods and Sanger sequencing. To use these protocols, researchers should have basic skills and experience in molecular biology and biolistic transformation. By using these protocols, plants edited without the use of any foreign DNA can be generated and identified within 9-11 weeks.


Asunto(s)
Edición Génica , Oryza , Biolística , Pan , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ribonucleoproteínas , Triticum/genética
13.
Plant Biotechnol J ; 16(2): 472-481, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28682500

RESUMEN

Direct control of protein level enables rapid and efficient analyses of gene functions in crops. Previously, we developed the RDDK-Shield1 (Shld1) system in the model plant Arabidopsis thaliana for direct modulation of protein stabilization using a synthetic small molecule. However, it was unclear whether this system is applicable to economically important crops. In this study, we show that the RDDK-Shld1 system enables rapid and tunable control of protein levels in rice and wheat. Accumulation of RDDK fusion proteins can be reversibly and spatio-temporally controlled by the synthetic small-molecule Shld1. Moreover, RDDK-Bar and RDDK-Pid3 fusions confer herbicide and rice blast resistance, respectively, in a Shld1-dependent manner. Therefore, the RDDK-Shld1 system provides a reversible and tunable technique for controlling protein functions and conditional expression of transgenes in crops.


Asunto(s)
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estabilidad Proteica
14.
Nat Plants ; 3: 17107, 2017 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-28758991

RESUMEN

The emergence of sequence-specific nucleases that enable genome editing is revolutionizing basic and applied biology. Since the introduction of CRISPR-Cas9, genome editing has become widely used in transformable plants for characterizing gene function and improving traits, mainly by inducing mutations through non-homologous end joining of double-stranded breaks generated by CRISPR-Cas9. However, it would be highly desirable to perform precision gene editing in plants, especially in transformation-recalcitrant species. Recently developed Cas9 variants, novel RNA-guided nucleases and base-editing systems, and DNA-free CRISPR-Cas9 delivery methods now provide great opportunities for plant genome engineering. In this Review Article, we describe the current status of plant genome editing, focusing on newly developed genome editing tools and methods and their potential applications in plants. We also discuss the specific challenges facing plant genome editing, and future prospects.


Asunto(s)
Edición Génica , Genoma de Planta , Sistemas CRISPR-Cas , Predicción , Edición Génica/tendencias
15.
Sci China Life Sci ; 60(8): 891-901, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28702742

RESUMEN

Pytohormone abscisic acid (ABA) plays important roles in defense responses. Nonetheless, how ABA regulates plant resistance to biotrophic fungi remains largely unknown. Arabidopsis ABA-deficient mutants, aba2-1 and aba3-1, displayed enhanced resistance to the biotrophic powdery mildew fungus Golovinomyces cichoracearum. Moreover, exogenously administered ABA increased the susceptibility of Arabidopsis to G. cichoracearum. Arabidopsis ABA perception components mutants, abi1-1 and abi2-1, also displayed similar phenotypes to ABA-deficient mutants in resistance to G. cichoracearum. However, the resistance to G. cichoracearum is not changed in downstream ABA signaling transduction mutants, abi3-1, abi4-1, and abi5-1. Microscopic examination revealed that hyphal growth and conidiophore production of G. cichoracearum were compromised in the ABA deficient mutants, even though pre-penetration and penetration growth of the fungus were not affected. In addition, salicylic acid (SA) and MPK3 are found to be involved in ABA-regulated resistance to G. cichoracearum. Our work demonstrates that ABA negatively regulates post-penetration resistance of Arabidopsis to powdery mildew fungus G. cichoracearum, probably through antagonizing the function of SA.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Ascomicetos/fisiología , Genes de Plantas , Arabidopsis/genética , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Mutación , Enfermedades de las Plantas/microbiología , Ácido Salicílico/metabolismo , Transducción de Señal , Virulencia
16.
Bio Protoc ; 7(7): e2209, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-34541217

RESUMEN

CRISPR/Cas9 system is a recently developed genome editing tool, and its power has been demonstrated in many organisms, including some plant species ( Wang et al., 2016 ). In eukaryotes, the Cas9/gRNA complexes target genome sites specifically and cleave them to produce double-strand breaks (DSBs), which can be repaired by non-homologous end joining (NHEJ) pathway ( Wang et al., 2016 ). Since NHEJ is error prone, mutations are thus generated. In plants, delivery of genome editing reagents is still challenging. In this protocol, we detail the procedure of a virus-based gRNA delivery system for CRISPR/Cas9 mediated plant genome editing (VIGE). This method offers a rapid and efficient way to deliver gRNA into plant cells, especially for those that are recalcitrant to transformation with Agrobacterium.

17.
Plant Cell ; 28(11): 2866-2883, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27811015

RESUMEN

Light is a major environmental cue affecting various physiological and metabolic processes in plants. Although plant photoreceptors are well characterized, the mechanisms by which light regulates downstream responses are less clear. In Arabidopsis thaliana, the accumulation of photoprotective anthocyanin pigments is light dependent, and the R2R3 MYB transcription factor MYB75/PAP1 regulates anthocyanin accumulation. Here, we report that MYB75 interacts with and is phosphorylated by MAP KINASE4 (MPK4). Their interaction is dependent on MPK4 kinase activity and is required for full function of MYB75. MPK4 can be activated in response to light and is involved in the light-induced accumulation of anthocyanins. We show that MPK4 phosphorylation of MYB75 increases its stability and is essential for light-induced anthocyanin accumulation. Our findings reveal an important role for a MAPK pathway in light signal transduction.


Asunto(s)
Antocianinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Asociadas a Pancreatitis , Fosforilación , Factores de Transcripción/genética
18.
Sci Rep ; 6: 20573, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26837708

RESUMEN

Plant microRNAs (miRNAs) play pivotal roles in many biological processes. Although many miRNAs have been identified in various plant species, the functions of these miRNAs remain largely unknown due to the shortage of effective genetic tools to block their functional activity. Recently, miRNA target mimic (TM) technologies have been applied to perturb the activity of specific endogenous miRNA or miRNA families. We previously reported that Tobacco rattle virus (TRV)-based TM expression can successfully mediate virus-based miRNA silencing/suppression (VbMS) in plants. In this study, we show the Potato virus X (PVX)-based TM expression causes strong miRNA silencing in Nicotiana benthamiana. The PVX-based expression of short tandem target mimic (STTMs) against miR165/166 and 159 caused the corresponding phenotype in all infected plants. Thus, a PVX-based VbMS is a powerful method to study miRNA function and may be useful for high-throughput investigation of miRNA function in N. benthamiana.


Asunto(s)
MicroARNs/genética , Nicotiana/genética , Potexvirus/fisiología , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Vectores Genéticos/genética , Hojas de la Planta/genética , Potexvirus/genética , ARN de Planta/genética , Nicotiana/crecimiento & desarrollo
19.
Mitochondrial DNA B Resour ; 1(1): 86-87, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33473418

RESUMEN

The complete chloroplast genome of Populus cathayana was determined in this study. The total length of the chloroplast genome size is 155 449 bp, with 36.95% GC content. A pair of inverted repeats of 27 525 bp are separated by a large single-copy region (LSC, 83 911 bp) and a small single-copy region (SSC, 16 488 bp). About 104 unique genes were annotated, including 76 protein coding genes, 24 tRNA genes and 4 rRNA genes.

20.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(4): 2802-4, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26114324

RESUMEN

The complete chloroplast (cp) genome sequence of the Oriental white oak: Quercus aliena Blume, the first sequenced member of the section Quercus, is reported in this study. The length of cp genome size is 160,921 bp, with 36.9% GC content. A pair of 25,841 bp inverted repeat regions (IRs) is separated by a 90,258 bp large single copy region (LSC) and an 18,980 bp small single copy region (SSC). This genome contains 115 unique genes, including 89 coding genes, four rRNA genes, and 39 tRNA genes. Border analysis of cp genome of Quercus aliena and other 10 most closely related cp genomes revealed that most Fagaceae species have high similarity either in structure or distribution of these genes except for Trigonobalanus doichangensis.


Asunto(s)
Genoma del Cloroplasto/genética , Quercus/genética , Evolución Molecular , Genes de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Seudogenes/genética , Quercus/clasificación , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA