Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 7775-7797, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099795

RESUMEN

Purpose: The present study aimed to develop a lipid nanoplatform, denoted as "BAL-PTX-LN", co-loaded with chiral baicalin derivatives (BAL) and paclitaxel (PTX) to promote the anti-lung cancer efficacy of paclitaxel and reduce the toxicity of chemotherapeutic drugs. Methods: BAL-PTX-LN was optimized through central composite design based on a single-factor experiments. BAL-PTX-LN was evaluated by TEM, particle size, encapsulation efficiency, hemolysis rate, release kinetics and stability. And was evaluated by pharmacokinetics and the antitumor efficacy studied both in vitro and in vivo. The in vivo safety profile of the formulation was assessed using hematoxylin and eosin (HE) staining. Results: BAL-PTX-LN exhibited spherical morphology with a particle size of 134.36 ± 3.18 nm, PDI of 0.24 ± 0.02, and with an encapsulation efficiency exceeding 90%, BAL-PTX-LN remained stable after 180 days storage. In vitro release studies revealed a zero-order kinetic model of PTX from the liposomal formulation. No hemolysis was observed in the preparation group. Pharmacokinetic analysis of PTX in the BAL-PTX-LN group revealed an approximately three-fold higher bioavailability and twice longer t1/2 compared to the bulk drug group. Furthermore, the IC50 of BAL-PTX-LN decreased by 2.35 times (13.48 µg/mL vs 31.722 µg/mL) and the apoptosis rate increased by 1.82 times (29.38% vs 16.13%) at 24 h compared to the PTX group. In tumor-bearing nude mice, the BAL-PTX-LN formulation exhibited a two-fold higher tumor inhibition rate compared to the PTX group (62.83% vs 29.95%), accompanied by a ten-fold decrease in Ki67 expression (4.26% vs 45.88%). Interestingly, HE staining revealed no pathological changes in tissues from the BAL-PTX-LN group, whereas tissues from the PTX group exhibited pathological changes and tumor cell infiltration. Conclusion: BAL-PTX-LN improves the therapeutic effect of poorly soluble chemotherapeutic drugs on lung cancer, which is anticipated to emerge as a viable therapeutic agent for lung cancer in clinical applications.


Asunto(s)
Neoplasias Pulmonares , Paclitaxel , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacología , Paclitaxel/administración & dosificación , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Humanos , Flavonoides/química , Flavonoides/farmacología , Flavonoides/farmacocinética , Flavonoides/administración & dosificación , Tamaño de la Partícula , Nanopartículas/química , Ratones , Liposomas/química , Liposomas/farmacocinética , Células A549 , Lípidos/química , Masculino , Ratones Endogámicos BALB C , Línea Celular Tumoral , Liberación de Fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacocinética , Ratones Desnudos , Hemólisis/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Antineoplásicos/administración & dosificación
2.
NPJ Biofilms Microbiomes ; 9(1): 82, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903770

RESUMEN

There has been an increase in cardiovascular morbidity and mortality over the past few decades, making cardiovascular disease (CVD) the leading cause of death worldwide. However, the pathogenesis of CVD is multi-factorial, complex, and not fully understood. The gut microbiome has long been recognized to play a critical role in maintaining the physiological and metabolic health of the host. Recent scientific advances have provided evidence that alterations in the gut microbiome and its metabolites have a profound influence on the development and progression of CVD. Among the trillions of microorganisms in the gut, bifidobacteria, which, interestingly, were found through the literature to play a key role not only in regulating gut microbiota function and metabolism, but also in reducing classical risk factors for CVD (e.g., obesity, hyperlipidemia, diabetes) by suppressing oxidative stress, improving immunomodulation, and correcting lipid, glucose, and cholesterol metabolism. This review explores the direct and indirect effects of bifidobacteria on the development of CVD and highlights its potential therapeutic value in hypertension, atherosclerosis, myocardial infarction, and heart failure. By describing the key role of Bifidobacterium in the link between gut microbiology and CVD, we aim to provide a theoretical basis for improving the subsequent clinical applications of Bifidobacterium and for the development of Bifidobacterium nutritional products.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Metabólicas , Humanos , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Bifidobacterium , Factores de Riesgo , Obesidad , Enfermedades Metabólicas/complicaciones
3.
J Nanobiotechnology ; 21(1): 143, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120534

RESUMEN

Colorectal cancer (CRC) has high incidence and mortality rates and is one of the most common cancers of the digestive tract worldwide. Metastasis and drug resistance are the main causes of cancer treatment failure. Studies have recently suggested extracellular vesicles (EVs) as a novel mechanism for intercellular communication. They are vesicular particles, which are secreted and released into biological fluids, such as blood, urine, milk, etc., by a variety of cells and carry numerous biologically active molecules, including proteins, nucleic acids, lipids, metabolites, etc. EVs play a crucial part in the metastasis and drug resistance of CRC by delivering cargo to recipient cells and modulating their behavior. An in-depth exploration of EVs might facilitate a comprehensive understanding of the biological behavior of CRC metastasis and drug resistance, which might provide a basis for developing therapeutic strategies. Therefore, considering the specific biological properties of EVs, researchers have attempted to explore their potential as next-generation delivery systems. On the other hand, EVs have also been demonstrated as biomarkers for the prediction, diagnosis, and presumed prognosis of CRC. This review focuses on the role of EVs in regulating the metastasis and chemoresistance of CRC. Moreover, the clinical applications of EVs are also discussed.


Asunto(s)
Neoplasias Colorrectales , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Comunicación Celular , Biomarcadores/metabolismo , Resistencia a Medicamentos , Neoplasias Colorrectales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA