Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Imeta ; 3(2): e192, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882500

RESUMEN

In this work, we introduced a siderophore information database (SIDERTE), a digitized siderophore information database containing 649 unique structures. Leveraging this digitalized data set, we gained a systematic overview of siderophores by their clustering patterns in the chemical space. Building upon this, we developed a functional group-based method for predicting new iron-binding molecules with experimental validation. Expanding our approach to the collection of open natural products (COCONUT) database, we predicted a staggering 3199 siderophore candidates, showcasing remarkable structure diversity that is largely unexplored. Our study provides a valuable resource for accelerating the discovery of novel iron-binding molecules and advancing our understanding of siderophores.

2.
Cell Host Microbe ; 32(6): 964-979.e7, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38754418

RESUMEN

The gut microbiota is closely linked to atherosclerosis. However, the role of intestinal fungi, essential members of the complex microbial community, in atherosclerosis is poorly understood. Herein, we show that gut fungi dysbiosis is implicated in patients with dyslipidemia, characterized by higher levels of Candida albicans (C. albicans), which are positively correlated with plasma total cholesterol and low-density lipoprotein-cholesterol (LDL-C) levels. Furthermore, C. albicans colonization aggravates atherosclerosis progression in a mouse model of the disease. Through gain- and loss-of-function studies, we show that an intestinal hypoxia-inducible factor 2α (HIF-2α)-ceramide pathway mediates the effect of C. albicans. Mechanistically, formyl-methionine, a metabolite of C. albicans, activates intestinal HIF-2α signaling, which drives increased ceramide synthesis to accelerate atherosclerosis. Administration of the HIF-2α selective antagonist PT2385 alleviates atherosclerosis in mice by reducing ceramide levels. Our findings identify a role for intestinal fungi in atherosclerosis progression and highlight the intestinal HIF-2α-ceramide pathway as a target for atherosclerosis treatment.


Asunto(s)
Aterosclerosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Candida albicans , Ceramidas , Transducción de Señal , Animales , Candida albicans/metabolismo , Aterosclerosis/microbiología , Aterosclerosis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ratones , Humanos , Ceramidas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Masculino , Microbioma Gastrointestinal/fisiología , Intestinos/microbiología , Intestinos/patología , Disbiosis/microbiología , Femenino , Candidiasis/microbiología , Candidiasis/metabolismo
3.
Cell Host Microbe ; 32(2): 276-289.e7, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38215741

RESUMEN

Bacterial persisters, a subpopulation of genetically susceptible cells that are normally dormant and tolerant to bactericides, have been studied extensively because of their clinical importance. In comparison, much less is known about the determinants underlying fungicide-tolerant fungal persister formation in vivo. Here, we report that during mouse lung infection, Cryptococcus neoformans forms persisters that are highly tolerant to amphotericin B (AmB), the standard of care for treating cryptococcosis. By exploring stationary-phase indicator molecules and developing single-cell tracking strategies, we show that in the lung, AmB persisters are enriched in cryptococcal cells that abundantly produce stationary-phase molecules. The antioxidant ergothioneine plays a specific and key role in AmB persistence, which is conserved in phylogenetically distant fungi. Furthermore, the antidepressant sertraline (SRT) shows potent activity specifically against cryptococcal AmB persisters. Our results provide evidence for and the determinant of AmB-tolerant persister formation in pulmonary cryptococcosis, which has potential clinical significance.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Fungicidas Industriales , Neumonía , Animales , Ratones , Anfotericina B/farmacología , Antibacterianos/farmacología , Antifúngicos/farmacología , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología , Fungicidas Industriales/farmacología , Neumonía/tratamiento farmacológico , Neumonía/microbiología
4.
Chembiochem ; 25(6): e202300770, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38116907

RESUMEN

Epidithiodioxopiperazine (ETP) alkaloids, featuring a 2,5-diketopiperazine core and transannular disulfide bridge, exhibit a broad spectrum of biological activities. However, the structural complexity has prevented efficient chemical synthesis and further clinical research. In the past few decades, many achievements have been made in the biosynthesis of ETPs. Here, we discuss the biosynthetic progress and summarize them as two comprehensible metabolic principles for better understanding the complex pathways of α, α'- and α, ß'-disulfide bridged ETPs. Specifically, we systematically outline the catalytic machineries to install α, α'- and α, ß'-disulfide by flavin-containing oxygenases. This concept would contribute to the medical and industrial applications of ETPs.


Asunto(s)
Disulfuros , Piperazinas , Disulfuros/química , Piperazinas/química
5.
Nat Commun ; 14(1): 7351, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963872

RESUMEN

Production of secondary metabolites is controlled by a complicated regulatory network in eukaryotic cells. Several layers of regulators are involved in this process, ranging from pathway-specific regulation, to epigenetic control, to global regulation. Here, we discover that interaction of an RNA-binding protein CsdA with a regulator RsdA coordinates fungal secondary metabolism. Employing a genetic deletion approach and transcriptome analysis as well as metabolomics analysis, we reveal that CsdA and RsdA synergistically regulate fungal secondary metabolism comprehensively. Mechanistically, comprehensive genetic and biochemical studies prove that RsdA and CsdA co-localize in the nucleus and physically interact to achieve their functions. In particular, we demonstrate that CsdA mediates rsdA expression by binding specific motif "GUCGGUAU" of its pre-mRNA at a post-transcriptional level. We thus uncover a mechanism in which RNA-binding protein physically interacts with, and controls the expression level of, the RsdA to coordinate fungal secondary metabolism.


Asunto(s)
Perfilación de la Expresión Génica , Precursores del ARN , Metabolismo Secundario/genética , Proteínas de Unión al ARN/genética
7.
Chin J Nat Med ; 21(6): 436-442, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37407174

RESUMEN

Tyrosine-decahydrofluorene derivatives are a class of hybrid compounds that integrate the properties of polyketides and nonribosomal peptides. These compounds feature a [6.5.6] tricarbocyclic core and a para-cyclophane ether moiety in their structures and exhibit anti-tumor and anti-microbial activities. In this study, we constructed the biosynthetic pathway of xenoacremones from Xenoacremonium sinensis ML-31 in the Aspergillus nidulans host, resulting in the identification of four novel tyrosine-decahydrofluorene analogs, xenoacremones I-L (1-4), along with two known analogs, xenoacremones A and B. Remarkably, compounds 3 and 4 contained a 12-membered para-cyclophane ring system, which is unprecedented among tyrosine-decahydrofluorene analogs in X. sinensis. The successful reconstruction of the biosynthetic pathway and the discovery of novel analogs demonstrate the utility of heterologous expression strategy for the generation of structurally diverse natural products with potential biological activities.


Asunto(s)
Aspergillus nidulans , Productos Biológicos , Policétidos , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Productos Biológicos/metabolismo , Policétidos/metabolismo , Péptidos/metabolismo , Vías Biosintéticas , Familia de Multigenes
8.
PLoS Comput Biol ; 19(5): e1011100, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37186644

RESUMEN

Non-ribosomal peptide synthetase (NRPS) is a diverse family of biosynthetic enzymes for the assembly of bioactive peptides. Despite advances in microbial sequencing, the lack of a consistent standard for annotating NRPS domains and modules has made data-driven discoveries challenging. To address this, we introduced a standardized architecture for NRPS, by using known conserved motifs to partition typical domains. This motif-and-intermotif standardization allowed for systematic evaluations of sequence properties from a large number of NRPS pathways, resulting in the most comprehensive cross-kingdom C domain subtype classifications to date, as well as the discovery and experimental validation of novel conserved motifs with functional significance. Furthermore, our coevolution analysis revealed important barriers associated with re-engineering NRPSs and uncovered the entanglement between phylogeny and substrate specificity in NRPS sequences. Our findings provide a comprehensive and statistically insightful analysis of NRPS sequences, opening avenues for future data-driven discoveries.


Asunto(s)
Péptido Sintasas , Péptidos , Péptidos/química , Péptido Sintasas/genética , Péptido Sintasas/química , Péptido Sintasas/metabolismo
9.
Angew Chem Int Ed Engl ; 62(28): e202304252, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37157140

RESUMEN

The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although mechanisms were proposed in previous studies, α,ß'-disulfide formation in ETPs is not well-determined owing to the failure to identify the hypothetical intermediate. Herein, we characterize the key ortho-quinone methide (o-QM) intermediate and prove its involvement in the carbon-sulfur migration from an α,α'- to an α,ß'-disulfide by elucidating pretrichodermamide A biosynthesis, which is catalyzed by a FAD-dependent thioredoxin oxygenase TdaE harboring a noncanonical CXXQ motif. Biochemical investigations of recombinant TdaE and mutants demonstrated that the construction of the α,ß'-disulfide was initiated by Gln140 triggering proton abstraction for generation of the essential o-QM intermediate, accompanied by ß'-acetoxy elimination. Subsequent attack on the α,α'-disulfide by Cys137 led to disulfide migration and spirofuran formation. This study expands the biocatalytic toolbox for transannular disulfide formation and sets the stage for the targeted discovery of bioactive ETPs.


Asunto(s)
Disulfuros , Indolquinonas , Indolquinonas/química
10.
Nat Prod Rep ; 40(6): 1078-1093, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37013809

RESUMEN

Covering: 2014 to June 2022The gut microbiota has attracted increasing attention from researchers due to its critical role in regulating human physiology and pathophysiology. Natural products (NPs) produced or transformed by gut microbes are key signalling mediators for a variety of physiological functions. On the other hand, NPs from ethnomedicines have also been found to generate health benefits through modulation of the gut microbiota. In this highlight, we review the most recent studies related to gut microbiota-derived NPs and bioactive NPs that regulate physiological and pathological processes via gut microbiota-associated mechanisms. We also outline the strategies for the discovery of gut microbiota-derived NPs and the methodologies of how to elucidate the crosstalk between bioactive NPs and the gut microbiota.


Asunto(s)
Productos Biológicos , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiología , Productos Biológicos/farmacología , Medicina Tradicional
11.
Biotechnol Biofuels Bioprod ; 16(1): 32, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859469

RESUMEN

BACKGROUND: Artificial microbial consortia composed of heterotrophic and photoautotrophic organisms represent a unique strategy for converting light energy and carbon dioxide into high-value bioproducts. Currently, the types of desired bioproducts are still limited, and microbial fitness benefit rendered by paired partner generally needs to be intensified. Exploring novel artificial microbial consortia at a laboratory scale is an essential step towards addressing this unmet need. This study aimed to conduct and analyze an artificial consortium composed of cyanobacterium Synechococcus elongatus FL130 with the filamentous fungus Aspergillus nidulans TWY1.1 for producing fungi-derived secondary metabolite of polyketide neosartoricin B. RESULTS: Polyketide-producing A. nidulans TWY1.1 substantially ameliorated the growth and the survival of sucrose-secreting cyanobacterium S. elongatus FL130 in salt-stressed environments. Besides sucrose, comparable amounts of other carbohydrates were released from axenically cultured FL130 cells, which could be efficiently consumed by TWY1.1. Relative to axenically cultured FL130, less glycogen was accumulated in FL130 cells co-cultured with TWY1.1, and the glycogen phosphorylase gene catalyzing the first step for glycogen degradation had two-fold expression. Different from axenically cultured filamentous fungi, abundant vacuoles were observed in fungal hyphae of TWY1.1 co-cultured with cyanobacterium FL130. Meanwhile, FL130 cells displayed a characteristic pattern of interacting with its heterotrophic partner, densely dispersing along certain hyphae of TWY1.1. Finally, polyketide neosartoricin B was produced from TWY1.1 in FL130-TWY1.1 co-cultures, which was tightly adjusted by nitrogen level. CONCLUSION: Overall, the results thoroughly proved the concept of pairing cyanobacteria with filamentous fungi to build artificial consortia for producing fungi-derived biomolecules.

12.
Angew Chem Int Ed Engl ; 62(18): e202217212, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36867112

RESUMEN

Fungal epidithiodiketopiperazines (ETPs) possess large structural diversity and complexity due to modifications of the cyclodipeptide skeleton. Elucidation of the biosynthetic pathway of pretrichodermamide A (1) in Trichoderma hypoxylon revealed a flexible catalytic machinery of multiple enzymes for generating ETP diversity. Seven tailoring enzymes encoded by the tda cluster are involved in 1 biosynthesis, that is, four P450s TdaB and TdaQ for 1,2-oxazine formation, TdaI for C7'-hydroxylation, and TdaG for C4, C5-epoxidation, two methyltransferases TdaH for C6'- and TdaO for C7'-O-methylation, and a reductase TdaD for furan opening. Gene deletions led to the identification of 25 novel ETPs, including 20 shunt products, indicating the catalytic promiscuity of Tda enzymes. Particularly, TdaG and TdaD accept various substrates and catalyze regiospecific reactions at different stages of 1 biosynthesis. Our study not only uncovers a hidden library of ETP alkaloids, but also helps to understand the hidden chemical diversity of natural products by pathway manipulation.


Asunto(s)
Metiltransferasas , Oxazinas/química , Estructura Molecular , Metiltransferasas/metabolismo , Modelos Moleculares
13.
Sci China Life Sci ; 66(4): 848-860, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36287342

RESUMEN

Characterization of filamentous fungal regulatory elements remains challenging because of time-consuming transformation technologies and limited quantitative methods. Here we established a method for quantitative assessment of filamentous fungal promoters based on flow cytometry detection of the superfolder green fluorescent protein at single-cell resolution. Using this quantitative method, we acquired a library of 93 native promoter elements from Aspergillus nidulans in a high-throughput format. The strengths of identified promoters covered a 37-fold range by flow cytometry. PzipA and PsltA were identified as the strongest promoters, which were 2.9- and 1.5-fold higher than that of the commonly used constitutive promoter PgpdA. Thus, we applied PzipA and PsltA to activate the silent nonribosomal peptide synthetase gene Afpes1 from Aspergillus fumigatus in its native host and the heterologous host A. nidulans. The metabolic products of Afpes1 were identified as new cyclic tetrapeptide derivatives, namely, fumiganins A and B. Our method provides an innovative strategy for natural product discovery in fungi.


Asunto(s)
Aspergillus nidulans , Productos Biológicos , Genes Fúngicos , Productos Biológicos/metabolismo , Regiones Promotoras Genéticas , Aspergillus nidulans/genética , Familia de Multigenes , Proteínas Fúngicas/metabolismo
14.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232357

RESUMEN

Ustilaginoidea virens (teleomorph: Villosiclava virens) is an important fungal pathogen that causes a devastating rice disease. It can produce mycotoxins including sorbicillinoids. The biosynthesis and biological functions of sorbicillinoids have not been reported in U. virens. In this study, we identified a sorbicillinoid biosynthetic gene cluster in which two polyketide synthase genes UvSorA and UvSorB were responsible for sorbicillinoid biosynthesis in U. virens. In ∆UvSorA and ∆UvSorB mutants, the mycelial growth, sporulation and hyphal hydrophobicity were increased dramatically, while the resistances to osmotic pressure, metal cations, and fungicides were reduced. Both phytotoxic activity of rice germinated seeds and cell wall integrity were also reduced. Furthermore, mycelia and cell walls of ∆UvSorA and ∆UvSorB mutants showed alterations of microscopic and submicroscopic structures. In addition, feeding experiment showed that sorbicillinoids could restore mycelial growth, sporulation, and cell wall integrity in ∆UvSorA and ∆UvSorB mutants. The results demonstrated that both UvSorA and UvSorB were responsible for sorbicillinoid biosynthesis in U. virens, and contributed to development (mycelial growth, sporulation, and cell wall integrity), stress responses, and phytotoxicity through sorbicillinoid mediation. It provides an insight into further investigation of biological functions and biosynthesis of sorbicillinoids.


Asunto(s)
Fungicidas Industriales , Hypocreales , Micotoxinas , Oryza , Fungicidas Industriales/farmacología , Hypocreales/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Sintasas Poliquetidas/genética
15.
J Fungi (Basel) ; 8(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36294566

RESUMEN

Nonribosomal peptide synthetase (NRPS)-like enzymes containing A-T-R domain architecture are also known as carboxylate reductases (CARs) for aldehyde generation. To identify new members of CARs, we established a virtual library containing 84 fungal CARs distributed in seven distinct clades by genome mining and phylogenetic analysis. Nine CARs, including PnlA from Pestalotiopsis fici and eight known CARs, were clustered in clade VI and proposed to catalyze the reduction of nonreducing polyketide synthase (NR-PKS)-derived aryl carboxylic acids. The recombinant protein PnlA was overproduced and purified to apparent homogeneity from Saccharomyces cerevisiae. In vitro enzyme assays of PnlA with 28 different benzoic acid derivatives (1-28) revealed the corresponding aldehyde formation in 14 cases (1-14). Comparison of conversion yields indicated the high preference of PnlA toward 3,5-dimethylorsellinic acid (DMOA, 4) and vanillic acid (10). A specificity-conferring code Q355 in PnlA was postulated by sequence alignment with the known CARs in clade VI. Our study provides an updated virtual library of fungal CAR enzymes and expands the biocatalytic selectivity of CARs.

16.
Nat Commun ; 13(1): 6361, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289208

RESUMEN

Biosynthesis of the flavonoid naringenin in plants and bacteria is commonly catalysed by a type III polyketide synthase (PKS) using one p-coumaroyl-CoA and three malonyl-CoA molecules as substrates. Here, we report a fungal non-ribosomal peptide synthetase -polyketide synthase (NRPS-PKS) hybrid FnsA for the naringenin formation. Feeding experiments with isotope-labelled precursors demonstrate that FnsA accepts not only p-coumaric acid (p-CA), but also p-hydroxybenzoic acid (p-HBA) as starter units, with three or four malonyl-CoA molecules for elongation, respectively. In vitro assays and MS/MS analysis prove that both p-CA and p-HBA are firstly activated by the adenylation domain of FnsA. Phylogenetic analysis reveals that the PKS portion of FnsA shares high sequence homology with type I PKSs. Refactoring the biosynthetic pathway in yeast with the involvement of fnsA provides an alternative approach for the production of flavonoids such as isorhamnetin and acacetin.


Asunto(s)
Flavonoides , Sintasas Poliquetidas , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Filogenia , Espectrometría de Masas en Tándem , Péptido Sintasas/metabolismo , Malonil Coenzima A , Catálisis
17.
Sci Adv ; 8(17): eabo6094, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35476435

RESUMEN

Microbial communication has attracted notable attention as an indicator of microbial interactions that lead to marked alterations of secondary metabolites (SMs) in varied environments. However, the mechanisms responsible for SM regulation are not fully understood, especially in fungal-fungal interactions. Here, cocultivation of an endophytic fungus Epicoccum dendrobii with the model fungus Aspergillus nidulans and several other filamentous fungi triggered widespread alteration of SMs. Multiple silent biosynthetic gene clusters in A. nidulans were activated by transcriptome and metabolome analysis. Unprecedentedly, gene deletion and replacement proved that a partial loss-of-function VeA1 protein, but not VeA, was associated with the widespread SM changes in both A. nidulans and A. fumigatus during cocultivation. VeA1 regulation required the transcription factor SclB and the velvet complex members LaeA and VelB for producing aspernidines as representative formation of SMs in A. nidulans. This study provides new insights into the mechanism that trigger metabolic changes during fungal-fungal interactions.


Asunto(s)
Aspergillus nidulans , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Técnicas de Cocultivo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Familia de Multigenes
18.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35409046

RESUMEN

The strategies of genetic dereplication and manipulation of epigenetic regulators to activate the cryptic gene clusters are effective to discover natural products with novel structure in filamentous fungi. In this study, a combination of genetic dereplication (deletion of pesthetic acid biosynthetic gene, PfptaA) and manipulation of epigenetic regulators (deletion of histone methyltransferase gene PfcclA and histone deacetylase gene PfhdaA) was developed in plant endophytic fungus Pestalotiopsis fici. The deletion of PfptaA with PfcclA and/or PfhdaA led to isolation of 1 novel compound, pestaloficiol X (1), as well as another 11 known compounds with obvious yield changes. The proposed biosynthesis pathway of pestaloficiol X was speculated using comparative analysis of homologous biosynthetic gene clusters. Moreover, phenotypic effects on the conidial development and response to oxidative stressors in the mutants were explored. Our results revealed that the new strain with deletion of PfcclA or PfhdaA in ΔPfptaA background host can neutralise the hyperformation of conidia in the PfptaA mutant, and that the ΔPfptaA ΔPfhdaA mutant was generally not sensitive to oxidative stressors as much as the ΔPfptaA ΔcclA mutant in comparison with the single mutant ΔPfptaA or the parental strains. This combinatorial approach can be applied to discover new natural products in filamentous fungi.


Asunto(s)
Productos Biológicos , Hongos , Productos Biológicos/metabolismo , Epigénesis Genética , Epigenómica , Hongos/metabolismo , Plantas/metabolismo
19.
Mycology ; 13(1): 32-38, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186411

RESUMEN

Two new sesquiterpenoids, 1-2, together with three known compounds, were isolated from Trichoderma hypoxylon. Among the known compounds, compound 4 was isolated as naturally occurring compound for the first time. The structures of these new compounds were characterized by HR-ESI-MS and spectroscopic methods including 1D and 2D NMR. The absolute configurations of 1-2 were assigned by electronic circular dichroism (ECD) calculations.

20.
J Fungi (Basel) ; 8(2)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35205896

RESUMEN

Under the guidance of LC-MS/MS-based molecular networking, seven new verrucosidin derivatives, penicicellarusins A-G (3-9), were isolated together with three known analogues from the fungus Penicillium cellarum. The structures of the new compounds were determined by a combination of NMR, mass and electronic circular dichroism spectral data analysis. The absolute configuration of penicyrone A (10) was corrected based on X-ray diffraction analyses. Bioactivity screening indicated that compounds 1, 2, and 4 showed much stronger promising hypoglycemic activity than the positive drug (rosiglitazone) in the range of 25-100 µM, which represents a potential new class of hypoglycemic agents. Preliminary structure-activity relationship analysis indicates that the formation of epoxy ring on C6-C7 in the structures is important for the glucose uptake-stimulating activity. The gene cluster for the biosynthesis of 1-12 is identified by sequencing the genome of P. cellarum and similarity analysis with the gene cluster of verrucosidins in P. polonicum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA