Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Cell ; 42(4): 682-700.e12, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38428409

RESUMEN

Cancer-associated fibroblasts (CAFs) exhibit considerable heterogeneity in advanced cancers; however, the functional annotation and mechanism of CAFs in early-stage cancers remain elusive. Utilizing single-cell RNA sequencing and spatial transcriptomic, we identify a previously unknown PDGFRα+ITGA11+ CAF subset in early-stage bladder cancer (BCa). Multicenter clinical analysis of a 910-case cohort confirms that PDGFRα+ITGA11+ CAFs are associated with lymphovascular invasion (LVI) and poor prognosis in early-stage BCa. These CAFs facilitate LVI and lymph node (LN) metastasis in early-stage BCa, as evidenced in a PDGFRα+ITGA11+ CAFs-specific deficient mouse model. Mechanistically, PDGFRα+ITGA11+ CAFs promote lymphangiogenesis via recognizing ITGA11 surface receptor SELE on lymphatic endothelial cells to activate SRC-p-VEGFR3-MAPK pathway. Further, CHI3L1 from PDGFRα+ITGA11+ CAFs aligns the surrounding matrix to assist cancer cell intravasation, fostering early-stage BCa LVI and LN metastasis. Collectively, our study reveals the crucial role of PDGFRα+ITGA11+ CAFs in shaping metastatic landscape, informing the treatment of early-stage BCa LVI.


Asunto(s)
Fibroblastos Asociados al Cáncer , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Animales , Humanos , Ratones , Fibroblastos Asociados al Cáncer/patología , Células Endoteliales , Fibroblastos/metabolismo , Cadenas alfa de Integrinas , Metástasis Linfática/patología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo
2.
Cancer Commun (Lond) ; 43(12): 1289-1311, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37483113

RESUMEN

BACKGROUND: Cancer-associated fibroblasts (CAFs) play a vital role in facilitating tumor progression through extensive reciprocal interplay with cancer cells. Tumor-derived extracellular vesicles (EVs) are the critical mediators involved in the crosstalk between cancer cells and stromal cells, contributing to the metastasis of cancers. Yet, the biological mechanisms of tumor-derived EVs in triggering CAFs phenotype to stimulate the lymph node (LN) metastasis of bladder cancer (BCa) are largely unknown. Here, we aimed to explore the effects and molecular mechanisms of tumor-derived EV-mediated CAFs phenotype in regulating BCa LN metastasis. METHODS: The high-throughput sequencing was utilized to identify the crucial long non-coding RNA (lncRNA) associated with CAF enrichment in BCa. The functional role of the transition of fibroblasts to CAFs induced by LINC00665-mediated EVs was investigated through the in vitro and in vivo assays. Chromatin isolation by RNA purification assays, fluorescence resonance energy transfer assays, cytokine profiling and patient-derived xenograft (PDX) model were performed to explore the underlying mechanism of LINC00665 in the LN metastasis of BCa. RESULTS: We found that CAFs are widely enriched in the tumor microenvironment of BCa, which correlated with BCa lymphangiogenesis and LN metastasis. We then identified a CAF-associated long non-coding RNA, LINC00665, which acted as a crucial mediator of CAF infiltration in BCa. Clinically, LINC00665 was associated with LN metastasis and poor prognosis in patients with BCa. Mechanistically, LINC00665 transcriptionally upregulated RAB27B expression and induced H3K4me3 modification on the promoter of RAB27B through the recruitment of hnRNPL. Moreover, RAB27B-induced EVs secretion endowed fibroblasts with the CAF phenotype, which reciprocally induced LINC00665 overexpression to form a RAB27B-HGF-c-Myc positive feedback loop, enhancing the lymphangiogenesis and LN metastasis of BCa. Importantly, we demonstrated that blocking EV-transmitted LINC00665 or HGF broke this loop and impaired BCa lymphangiogenesis in a PDX model. CONCLUSION: Our study uncovers a precise mechanism that LINC00665 sustains BCa LN metastasis by inducing a RAB27B-HGF-c-Myc positive feedback loop between BCa cells and fibroblasts, suggesting that LINC00665 could be a promising therapeutic target for patients with LN metastatic BCa.


Asunto(s)
ARN Largo no Codificante , Neoplasias de la Vejiga Urinaria , Animales , Humanos , Metástasis Linfática , Linfangiogénesis/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Retroalimentación , Neoplasias de la Vejiga Urinaria/patología , Fibroblastos/metabolismo , Modelos Animales de Enfermedad , Microambiente Tumoral/genética , Factor de Crecimiento de Hepatocito/metabolismo
3.
Neurotox Res ; 40(6): 2253-2263, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36074257

RESUMEN

Bupivacaine (BUP), which is widely used in anesthesia, can cause neurotoxicity and neurological abnormalities. This work intended to study the function of long non-coding RNA (lncRNA) OIP5 antisense RNA 1 (OIP5-AS1) in BUP-triggered neurotoxicity. OIP5-AS1, microRNA (miR)-34b, and nuclear factor of activated T cells 5 (NFAT5) levels were examined via real-time quantitative PCR (RT-qPCR). Cell proliferation, caspase-3 activity, and apoptosis were assessed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), caspase-3 activity, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. The regulatory relationships between miR-34b and OIP5-AS1 or NFAT5 were validated via RNA binding protein immunoprecipitation (RIP) and dual-luciferase reporter assays. Our data demonstrated that OIP5-AS1 and NFAT5 levels were downregulated and miR-34b was upregulated upon exposure to BUP. Functional assays implied that the OIP5-AS1 deficiency impeded cell proliferation and enhanced the apoptosis of DRG neurons, while OIP5-AS1 addition reversed these changes. Moreover, OIP5-AS1 could bind to miR-34b and OIP5-AS1 regulated BUP-induced neurotoxicity via miR-34b. Besides, miR-34b could directly interact with NFAT5. Augmentation of miR-34b impeded cell proliferation and expedited the apoptosis and caspase-3 activity, while NFAT5 addition neutralized these impacts. Finally, it was verified that OIP5-AS1 could upregulate NFAT5 through sponging miR-34b. In sum, our results disclosed that OIP5-AS1 ameliorated BUP-caused neurotoxicity via regulating the miR-34b/NFAT5 axis, suggesting that OIP5-AS1 might be a promising therapeutic target for the treatment of BUP-induced neurotoxicity.


Asunto(s)
MicroARNs , ARN Largo no Codificante , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Caspasa 3 , Ganglios Espinales/metabolismo , Proliferación Celular , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA