Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Dalton Trans ; 53(27): 11295-11309, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38898716

RESUMEN

A thiophene-derived Schiff base ligand (E)-2-morpholino-N-(thiophen-2-ylmethylene)ethanamine was used for the synthesis of M(II) complexes, [TEM(M)X2] (M = Co, Cu, Zn; X = Cl; M = Cd, X = Br). Structural characterization of the synthesized complexes revealed distorted tetrahedral geometry around the M(II) center. In vitro investigation of the synthesized ligand and its M(II) complexes showed considerable anti-urease and leishmanicidal potential. The synthesized complexes also exhibited a significant inhibitory effect on urease, with IC50 values in the range of 3.50-8.05 µM. In addition, the docking results were consistent with the experimental results. A preliminary study of human colorectal cancer (HCT), hepatic cancer (HepG2), and breast cancer (MCF-7) cell lines showed marked anticancer activities of these complexes.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Simulación del Acoplamiento Molecular , Bases de Schiff , Tiofenos , Ureasa , Humanos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ureasa/antagonistas & inhibidores , Ureasa/metabolismo , Tiofenos/química , Tiofenos/farmacología , Tiofenos/síntesis química , Bases de Schiff/química , Bases de Schiff/farmacología , Bases de Schiff/síntesis química , Morfolinas/química , Morfolinas/farmacología , Morfolinas/síntesis química , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Estructura Molecular , Leishmania/efectos de los fármacos , Relación Estructura-Actividad , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antiprotozoarios/síntesis química , Ensayos de Selección de Medicamentos Antitumorales
2.
Small ; 20(1): e2305289, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37649146

RESUMEN

Green fuel from water splitting is hardcore for future generations, and the limited source of fresh water (<1%) is a bottleneck. Seawater cannot be used directly as a feedstock in current electrolyzer techniques. Until now single atom catalysts were reported by many synthetic strategies using notorious chemicals and harsh conditions. A cobalt single-atom (CoSA) intruding cobalt oxide ultrasmall nanoparticle (Co3 O4 USNP)-intercalated porous carbon (PC) (CoSA-Co3 O4 @PC) electrocatalyst was synthesized from the waste orange peel as a single feedstock (solvent/template). The extended X-ray absorption fine structure spectroscopy (EXAFS) and theoretical fitting reveal a clear picture of the coordination environment of the CoSA sites (CoSA-Co3 O4 and CoSA-N4 in PC). To impede the direct seawater corrosion and chlorine evolution the seawater has been desalinated (Dseawater) with minimal cost and the obtained PC is used as an adsorbent in this process. CoSA-Co3 O4 @PC shows high oxygen evolution reaction (OER) activity in transitional metal impurity-free (TMIF) 1 M KOH and alkaline Dseawater. CoSA-Co3 O4 @PC exhibits mass activity that is 15 times higher than the commercial RuO2 . Theoretical interpretations suggest that the optimized CoSA sites in Co3 O4 USNPs reduce the energy barrier for alkaline water dissociation and simultaneously trigger an excellent OER followed by an adsorbate evolution mechanism (AEM).

3.
Toxics ; 11(11)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37999543

RESUMEN

In urban areas, a major source of harmful particulate matter is generated by vehicles. In particular, bus stops, where people often stay for public transportation, generate high concentrations of particulate matter compared to the general atmosphere. In this study, a non-powered type brush filter that generates electrostatic force without using a separate power source was developed to manage the concentration of particulate matter exposed at bus stops, and the removal performance of particulate matter was evaluated. The dust collection performance of the non-motorized brush filter varied by material, with particle removal efficiencies of 82.1 ± 3.4, 76.1 ± 4.7, and 73.7 ± 4.5% for horse hair, nylon, and stainless steel, respectively. In conditions without the fan running to see the effect of airflow, the particle removal efficiency was relatively low at 58.2 ± 8.4, 53.6 ± 9.2, and 58.0 ± 7.3%. Then, to check the dust collection performance according to the density, the number of brushes was increased to densify the density, and the horse hair, nylon, and stainless steel brush filters showed a maximum dust collection performance of 89.6 ± 2.2, 88.3 ± 3.2, and 82.1 ± 3.8%, respectively. To determine the replacement cycle of the non-powered brush filter, the particulate removal performance was initially 88.0 ± 3.2% when five horse hair brushes were used. Over time, particulate matter tended to gradually decrease, but after a period of time, particulate matter tended to increase again. The purpose of this study is to evaluate the particulate matter removal performance using a brush filter that generates electrostatic force without a separate power source. This study's brush filter is expected to solve the maintenance problems caused by the purchase and frequent replacement of expensive HEPA filters that occur with existing abatement devices, and the ozone problems caused by abatement devices that use high voltages.

4.
Dalton Trans ; 52(45): 16802-16811, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37902974

RESUMEN

Here, we report a series of four novel Cu complexes, namely 2-(piperidin-1-ylmethyl)quinoline copper(II) nitrate, [LACu(NO3)2] (Cu1), 4-(quinolin-2-ylmethyl)morpholine copper(II) nitrate, [LBCu(NO3)2] (Cu2), 4-(quinolin-2-ylmethyl)morpholine copper(II) chloride, [LBCuCl2] (Cu3), and 2-(piperidin-1-ylmethyl)pyridine copper(II) chloride, [LCCu(µ-Cl)Cl]2 (Cu4). X-ray diffraction studies revealed that the geometry around the Cu(II) center could be best described as distorted octahedral in Cu1 and Cu2, whereas Cu3 and Cu4 showed distorted tetrahedral and square pyramidal geometries, respectively. DNA binding studies showed that Cu complexes Cu1-3 containing quinoline interacted via minor groove binding, whereas the Cu4 complex containing pyridine interacted via intercalation. All Cu complexes containing quinoline and pyridine caused destabilization of DNA at specific homogeneous G-C regions. The Cu1-3 complexes as groove binders destabilized the DNA structure much more than the Cu4 complex as an intercalator. Regarding groove binders, the Cu2 complex containing quinoline and morpholine caused the highest distortion and destabilization of the DNA structure, leading to high DNA cleavage efficiency.


Asunto(s)
Cobre , Quinolinas , Cobre/química , ADN/química , Desoxirribonucleasas , Piridinas , Morfolinas , Cristalografía por Rayos X
5.
ACS Omega ; 8(6): 6016-6029, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36816644

RESUMEN

Zn(II), Pd(II), and Cd(II) complexes, [L TH MCl 2 ] (M = Zn, Pd; X = Br, Cl) and [L TH Cd(µ-X)X] n (X = Cl, Br; n = n, 2), supported by the (E)-N 1,N 1-dimethyl-N 2-(thiophen-2-ylmethylene)ethane-1,2-diamine (L TH ) ligand are synthesized and structurally characterized. Density functional theory (DFT) electronic structure calculations and variable-temperature NMR support the presence of two conformers and a dynamic interconversion process of the minor conformer to the major one in solution. It is found that the existence of two relevant complex conformers and their respective ratios in solution depend on the central metal ions and counter ions, either Cl- or Br-. Among the two relevant conformers, a single conformer is crystallized and X-ray diffraction analysis revealed a distorted tetrahedral geometry for Zn(II) complexes, and a distorted square planar and square pyramidal geometry for Pd(II) and Cd(II) complexes, respectively. It is shown that [L TH MCl 2 ]/LiO i Pr (M = Zn, Pd) and [L TH Cd(µ-Cl)Cl] n /LiO i Pr can effectively catalyze the ring-opening polymerization (ROP) reaction of rac-lactide (rac-LA) with 94% conversion within 30 s with [L TH ZnCl 2 ]/LiO i Pr at 0 °C. Overall, hetero-enriched poly(lactic acid)s (PLAs) were provided by these catalytic systems with [L TH ZnCl 2 ]/LiO i Pr producing PLA with higher heterotactic bias (P r up to 0.74 at 0 °C).

6.
Chemosphere ; 286(Pt 2): 131673, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34358889

RESUMEN

In the field of nanotechnology, nanoadsorbents have emerged as a powerful tool for the purification of contaminated aqueous environments. Among the variety of nanoadsorbents developed so far, magnetite (Fe3O4) nanoparticles have drawn particular interest because of their quick separation, low cost, flexibility, reproducibility, and environmentally benign nature. Herein, we describe a new strategy for the synthesis of Fe3O4 nanoclusters, which is based on the use of naturally available edible mushrooms (Pleurotus eryngii) and environmentally benign propylene glycol as a solvent medium. By tuning the temperature, we successfully convert Fe3O4 nanoparticles into Fe3O4 nanoclusters via hydrothermal treatment, as evidenced by transmission electron microscopy. The Fe3O4 nanoclusters are functionalized with an organic molecule linker (dihydrolipoic acid, DHLA) to remove hazardous Hg(II) ions selectively. Batch adsorption experiments demonstrate that Hg(II) ions are strongly adsorbed on the material surface, and X-ray photoelectron and Fourier transform infrared spectroscopy techniques reveal the Hg(II) removal mechanism. The DHLA@Fe3O4 nanoclusters show a high removal efficiency of 99.2 % with a maximum Hg(II) removal capacity of 140.84 mg g-1. A kinetic study shows that the adsorption equilibrium is rapidly reached within 60 min and follows a pseudo second-order kinetic model. The adsorption and separation system can be readily recycled using an external magnet when the separation occurs within 10 s. We have studied the effect of various factors on the adsorption process, including pH, concentration, dosage, and temperature. The newly synthesized superparamagnetic DHLA@Fe3O4 nanoclusters open a new path for further development of the medical, catalysis, and environmental fields.


Asunto(s)
Nanopartículas de Magnetita , Mercurio , Nanopartículas , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Mercurio/análisis , Pleurotus , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis
7.
Chemistry ; 27(60): 14789, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34694660

RESUMEN

Invited for the cover of this issue are Purna Chandra Rao, Minyoung Yoon and co-workers at Kyungpook National University, Gachon University, POSTECH, Korea Atomic Energy Research Institute and the University of Sydney. The image depicts how single C8 isomers are selectively isolated from a mixture. Read the full text of the article at 10.1002/chem.202102640.

8.
Chem Commun (Camb) ; 57(80): 10435, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34585678

RESUMEN

Correction for 'Organic guest molecule induced ultrafast breathing of an epitaxially grown metal-organic framework on a self-assembled monolayer' by Purna Chandra Rao et al., Chem. Commun., 2021, DOI: 10.1039/d1cc03721h.

9.
Chem Commun (Camb) ; 57(79): 10158-10161, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34505597

RESUMEN

We report epitaxially grown new two-dimensional metal-organic framework (MOF) thin films on a self-assembled monolayer (SAM). We fabricated these epitaxial thin-films using stepwise layer-by-layer seeding followed by solvothermal treatment. The MOF thin films exhibit ultrafast structural flexibility (through breathing) compared to their bulk samples upon uptake of organic guest molecules.

10.
Chemistry ; 27(60): 14851-14857, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34427952

RESUMEN

The breathing phenomenon in metal-organic frameworks (MOFs) has revealed supramolecular host-guest interactions that could be beneficial for chemical separation in numerous industrial applications. The cost-effective purification of C8 alkyl aromatics such as o-xylene, m-xylene, p-xylene, and ethylbenzene remains challenging owing to their similar molecular structures, boiling points, kinetic diameters, polarities, etc. Herein, we report two Zn-based pillar-bilayered MOFs, denoted [Zn2 (aip)2 (pillar)] (aip=5-aminoisophthalic acid; pillar: bpy=4,4'-bipyridine or bpe=1,2-bis(4-pyridyl)ethane) that exhibit a breathing effect depending on the adsorbed guest molecules. Guest-dependent sorption studies in organic solvents such as N,N-dimethylformamide, methanol, benzene, and water vapor display reversible structural flexibility through the breathing effect in both framework compounds. The experiments conducted on C8 -alkyl aromatics resulting in both MOF compounds can access these isomers in the shrunken pores, and thereby expand the pore size by framework breathing. In C8 binary mixtures, these Zn-MOFs exhibit selective sorption properties based on the different interactions between guest C8 aromatics and the framework structure.

11.
Coord Chem Rev ; 426: 213544, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32981945

RESUMEN

Progress in metal-organic frameworks (MOFs) has advanced from fundamental chemistry to engineering processes and applications, resulting in new industrial opportunities. The unique features of MOFs, such as their permanent porosity, high surface area, and structural flexibility, continue to draw industrial interest outside the traditional MOF field, both to solve existing challenges and to create new businesses. In this context, diverse research has been directed toward commercializing MOFs, but such studies have been performed according to a variety of individual goals. Therefore, there have been limited opportunities to share the challenges, goals, and findings with most of the MOF field. In this review, we examine the issues and demands for MOF commercialization and investigate recent advances in MOF process engineering and applications. Specifically, we discuss the criteria for MOF commercialization from the views of stability, producibility, regulations, and production cost. This review covers progress in the mass production and formation of MOFs along with future applications that are not currently well known but have high potential for new areas of MOF commercialization.

12.
ACS Omega ; 5(38): 24799-24810, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33015498

RESUMEN

To ensure environmental safety, the removal of organic pollutants has gained increasing attention globally. We have synthesized uniform Au nanorod (NR)-doped Cu2O core-shell nanocubes (CSNCs) via a seed-mediated route embedded on the surface of rGO sheets. The Au NRs@Cu2O/rGO nanocomposite was characterized using various techniques such as transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared (FT-IR) and Raman spectroscopies. The scanning TEM-energy-dispersive spectroscopy (STEM-EDS) elemental mapping of the AuNRs@Cu2O/rGO nanocomposite indicates that the Au NR (40 nm) is fully covered with the Cu2O particles (∼145 nm) as a shell. N2 gas sorption analysis shows that the specific surface area of the composite is 205.5 m2/g with a mesoporous character. Moreover, incorporation of Au NRs@Cu2O CSNCs increases the nanogaps around the nanoparticles and suppresses the stacking/bundling of rGO, which significantly influences the pore size and increase the surface area. A batch adsorption experiment was carried out under various parameters, such as the effect of pH, contact time, temperature, initial dye concentration, and adsorbent dosage, for the removal of methylene blue (MB) in aqueous solution. The high surface area and mesoporosity can cause the adsorption capacity to reach equilibrium within 20 min with a 99.8% removal efficiency. Both kinetic and isotherm data were obtained and fitted very well with the pseudo-second-order kinetic and Langmuir isotherm model. The Langmuir isotherm revealed an excellent dye sorption capacity of 243.9 mg/g at 298 K. Moreover, after five adsorption cycles, the dye removal efficiency decreased from 99 to 86%. This novel route paves a new path for heterogeneous adsorbent synthesis, which is useful for catalysis and electrochemical applications.

13.
Chem Commun (Camb) ; 56(32): 4468-4471, 2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32196036

RESUMEN

In this study, a successful proton conduction modulation of MOFs, from an ionic insulator to an ionic conductor, is demonstrated through their structural transformation. It is shown that the reversible structural change from amorphous to crystalline phases allows for the reversible proton conduction modulation of MOFs. Moreover, the proton conduction mechanism of the ionic conductor phase is elucidated by 2H NMR analysis.

14.
RSC Adv ; 10(27): 16209-16220, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35493681

RESUMEN

Iminomethylpyridine based copper(ii) complexes [LnCuCl2] (Ln = LA, LC-LF) and [LBCu(µ-Cl)Cl]2 have been synthesized and characterized. [LCCuCl2] and [LECuCl2] were identified to possess distorted square pyramidal geometries obtained via N,N'-bidentate coordination, whereas [LFCuCl2] showed N,N',N''-coordination of the corresponding ligand (LF). [LBCu(µ-Cl)Cl]2 was found to be dimeric with a distorted square pyramidal geometry around the Cu(ii) center. The catalytic properties of dimethyl derivatives, generated in situ, towards the ring opening polymerization (ROP) of rac-LA were investigated. All the complexes efficiently polymerized rac-LA and yielded heterotactic poly(lactide) (PLA) (P r up to 0.88 at -25 °C). Further, these complexes could effectively polymerize methyl methacrylate (MMA) at 60 °C in the presence of modified methylaluminoxane (MMAO), to furnish syndio-enriched PMMA. The catalytic efficacies of synthesized complexes can be correlated to the suitable complexity of the substituents attached to the ligand architecture. Thus, both the steric and electronic properties as well as the orientation of the various substituents relative to the xy plane of the pyridyl moiety and metal center play an influential role in steering catalytic activities, whereas the selectivities remain unaffected.

15.
J Am Chem Soc ; 141(50): 19850-19858, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31750655

RESUMEN

Deuterium has been recognized as an irreplaceable element in industrial and scientific research. However, hydrogen isotope separation still remains a huge challenge due to the identical physicochemical properties of the isotopes. In this paper, a partially fluorinated metal-organic framework (MOF) with copper, a so-called FMOFCu, was investigated to determine the separation efficiency and capacity of the framework for deuterium extraction from a hydrogen isotope mixture. The unique structure of this porous material consists of a trimodal pore system with large tubular cavities connected through a smaller cavity with bottleneck apertures with a size of 3.6 Å plus a third hidden cavity connected by an even smaller aperture of 2.5 Å. Depending on the temperature, these two apertures show a gate-opening effect and the cavities get successively accessible for hydrogen with increasing temperature. Thermal desorption spectroscopy (TDS) measurements indicate that the locally flexible MOF can separate D2 from anisotope mixture efficiently, with a selectivity of 14 at 25 K and 4 at 77 K.

16.
Chem Commun (Camb) ; 55(79): 11844-11847, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31517359

RESUMEN

The carborane (CB)-functionalized ligand was installed in a variety of MOFs through postsynthetic ligand exchange processes. This methodology is a general method for preparing o-CB-functionalized MOFs with known frameworks. Furthermore, the photoluminescence (PL) spectra revealed intriguing aggregation-induced emission (AIE) features following the systematic incorporation of o-CB functionalities into framework-type materials.

17.
Chemistry ; 25(63): 14414-14420, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31441970

RESUMEN

The effect of metal on the degree of flexibility upon evacuation of metal-organic frameworks (MOFs) has been revealed with positional control of the organic functionalities. Although Co-, Cu-, and Zn-based DMOFs (DMOF = DABCO MOF, DABCO = 1,4-diazabicyclo[2.2.2]octane) with ortho-ligands (2,3-NH2 Cl) have frameworks that are inflexible upon evacuation, MOFs with para-ligands (2,5-NH2 Cl) showed different N2 uptake amounts after evacuation by metal exchange. Considering that the structural analyses were not fully sufficiently different to explain the drastic changes in N2 adsorption after evacuation, quantum chemical simulation was explored. A new index (η) was defined to quantify the regularity around the metal based on differences in the oxygen-metal-oxygen angles. Within 2,5-NH2 Cl, the η value becomes larger as the metal are varied from Co to Zn. A large η value means that the structures around the metal center are less ordered. These results can be used to explain flexibility changes upon evacuation by altering the metal cation in this regioisomeric system.

18.
ACS Omega ; 3(11): 14597-14605, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30555980

RESUMEN

Because of their large surface area and conductivity, some inorganic materials have emerged as good candidates for the trace-level detection of pharmaceutical drugs. In the present work, we demonstrate the detection of an anticancer drug (regorafenib, REG) by using an electrochemical sensor based on a nanocomposite material. We synthesized a zirconia-nanoparticle-decorated reduced graphene oxide composite (ZrO2/rGO) using a one-pot hydrothermal method. Reduction of the graphene oxide supports of the Zr2+ ions with hydrazine hydrate helped in preventing the agglomeration of the zirconia nanoparticles and in obtaining an excellent electrocatalytic response of the nanostructure ZrO2/rGO-based electrochemical sensor. Structural and morphological characterization of the nanostructure ZrO2/rGO was performed using various analytical methods. A novel regorafenib (REG) electrochemical sensor was fabricated by immobilizing the as-prepared nanostructure ZrO2/rGO on to a glassy carbon electrode (GCE). The resulting ZrO2/rGO/GCE could be used for the rapid and selective determination of REG in the presence of ascorbic acid and uric acid. The ZrO2/rGO/GCE showed a linear response for the REG analysis in the dynamic range 11-343 nM, with a remarkable lower detection limit and limit of quantifications of 17 and 59 nM, respectively. The newly developed sensor was used for the accurate determination of REG in both serum samples and pharmaceutical formulations, with satisfactory results.

19.
Int J Mol Sci ; 19(10)2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-30322083

RESUMEN

Salt toxicity is the major factor limiting crop productivity in saline soils. In this paper, 295 accessions including a heuristic core set (137 accessions) and 158 bred varieties were re-sequenced and ~1.65 million SNPs/indels were used to perform a genome-wide association study (GWAS) of salt-tolerance-related phenotypes in rice during the germination stage. A total of 12 associated peaks distributed on seven chromosomes using a compressed mixed linear model were detected. Determined by linkage disequilibrium (LD) blocks analysis, we finally obtained a total of 79 candidate genes. By detecting the highly associated variations located inside the genic region that overlapped with the results of LD block analysis, we characterized 17 genes that may contribute to salt tolerance during the seed germination stage. At the same time, we conducted a haplotype analysis of the genes with functional variations together with phenotypic correlation and orthologous sequence analyses. Among these genes, OsMADS31, which is a MADS-box family transcription factor, had a down-regulated expression under the salt condition and it was predicted to be involved in the salt tolerance at the rice germination stage. Our study revealed some novel candidate genes and their substantial natural variations in the rice genome at the germination stage. The GWAS in rice at the germination stage would provide important resources for molecular breeding and functional analysis of the salt tolerance during rice germination.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Germinación , Proteínas de Dominio MADS/genética , Oryza/crecimiento & desarrollo , Tolerancia a la Sal , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
20.
Nanoscale ; 10(34): 16268-16277, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-30128456

RESUMEN

Recently, active bubble-propelled micromotors have attracted great attention for fuel applications. However, for generating bubble-propelled micromotors, additional catalysts, such as Pt, Ag, and Ru, are required. These catalysts are expensive, toxic, and highly unstable for broad applications. To overcome these issues, in this study, we present an innovative methodology for the preparation of self-propelled motor machines using naturally occurring diatom frustules. This natural diatom motor shows effective motion in the presence of a very low concentration (0.8%) of H2O2 as a fuel at pH 7. Due to the unique 3D anisotropic shape of the diatom, the self-propelled motor exhibited unidirectional motion with a speed of 50 µm s-1 and followed pseudo first-order kinetics. It was found that a trace amount of iron oxide (Fe2O3) in the diatom was converted into Fe3O4, which can act as a catalyst to achieve the facile decomposition of H2O2. Interestingly, "braking" of the unidirectional motion was observed upon treatment with EDTA, which blocked the catalytically active site. These results illustrate that diatom catalytic micromotors have opened a new era in the field of catalysis and bioengineering applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA