Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Adv ; 10(26): eadn5228, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941469

RESUMEN

Liver fibrosis is characterized by the activation of perivascular hepatic stellate cells (HSCs), the release of fibrogenic nanosized extracellular vesicles (EVs), and increased HSC glycolysis. Nevertheless, how glycolysis in HSCs coordinates fibrosis amplification through tissue zone-specific pathways remains elusive. Here, we demonstrate that HSC-specific genetic inhibition of glycolysis reduced liver fibrosis. Moreover, spatial transcriptomics revealed a fibrosis-mediated up-regulation of EV-related pathways in the liver pericentral zone, which was abrogated by glycolysis genetic inhibition. Mechanistically, glycolysis in HSCs up-regulated the expression of EV-related genes such as Ras-related protein Rab-31 (RAB31) by enhancing histone 3 lysine 9 acetylation on the promoter region, which increased EV release. Functionally, these glycolysis-dependent EVs increased fibrotic gene expression in recipient HSC. Furthermore, EVs derived from glycolysis-deficient mice abrogated liver fibrosis amplification in contrast to glycolysis-competent mouse EVs. In summary, glycolysis in HSCs amplifies liver fibrosis by promoting fibrogenic EV release in the hepatic pericentral zone, which represents a potential therapeutic target.


Asunto(s)
Vesículas Extracelulares , Glucólisis , Células Estrelladas Hepáticas , Cirrosis Hepática , Animales , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Vesículas Extracelulares/metabolismo , Ratones , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Humanos , Modelos Animales de Enfermedad , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Masculino
2.
Plant Genome ; 16(2): e20209, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35470589

RESUMEN

Cross bred species such as switchgrass may benefit from advantageous breeding strategies requiring inbred lines. Doubled haploid production methods offer several ways that these lines can be produced that often involve uniparental genome elimination as the rate limiting step. We have used a centromere-mediated genome elimination strategy in which modified CENH3 is expressed to induce the process. Transgenic tetraploid switchgrass lines coexpressed Cas9, a poly-cistronic tRNA-gRNA tandem array containing eight guide RNAs that target two CENH3 genes, and different chimeric versions of CENH3 with alterations to the N-terminal tail region. Genotyping of CENH3 genes in transgenics identified edits including frameshift mutations and deletions in one or both copies of the two CENH3 genes. Flow cytometry of T1 seedlings identified two T0 lines that produced five haploid individuals representing an induction rate of 0.5% and 1.4%. Eight different T0 lines produced aneuploids at rates ranging from 2.1 to 14.6%. A sample of aneuploid lines were sequenced at low coverage and aligned to the reference genome, revealing missing chromosomes and chromosome arms.


Asunto(s)
Panicum , Haploidia , Histonas/genética , Fitomejoramiento , Aneuploidia
3.
Transgenic Res ; 25(2): 173-86, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26712321

RESUMEN

Plant cell wall degradation into fermentable sugars by cellulases is one of the greatest barriers to biofuel production. Expansin protein loosens the plant cell wall by opening up the complex of cellulose microfibrils and polysaccharide matrix components thereby increasing its accessibility to cellulases. We over-expressed cucumber expansin in maize kernels to produce enough protein to assess its potential to serve as an industrial enzyme for applications particularly in biomass conversion. We used the globulin-1 embryo-preferred promoter to express the cucumber expansin gene in maize seed. Expansin protein was targeted to one of three sub-cellular locations: the cell wall, the vacuole, or the endoplasmic reticulum (ER). To assess the level of expansin accumulation in seeds of transgenic kernels, a high throughput expansin assay was developed. The highest expressing plants were chosen and enriched crude expansin extract from those plants was tested for synergistic effects with cellulase on several lignocellulosic substrates. Activity of recombinant cucumber expansin from transgenic kernels was confirmed on these pretreated substrates. The best transgenic lines (ER-targeted) can now be used for breeding to increase expansin expression for use in the biomass conversion industry. Results of these experiments show the success of expansin over-expression and accumulation in transgenic maize seed without negative impact on growth and development and confirm its synergistic effect with cellulase on deconstruction of complex cell wall substrates.


Asunto(s)
Cucumis sativus/genética , Proteínas de Plantas/genética , Semillas/genética , Zea mays/genética , Biomasa , Celulosa/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/biosíntesis , Plantas Modificadas Genéticamente , Zea mays/crecimiento & desarrollo
4.
Plant Biotechnol J ; 5(6): 709-19, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17614952

RESUMEN

Ethanol from lignocellulosic biomass is being pursued as an alternative to petroleum-based transportation fuels. To succeed in this endeavour, efficient digestion of cellulose into monomeric sugar streams is a key step. Current production systems for cellulase enzymes, i.e. fungi and bacteria, cannot meet the cost and huge volume requirements of this commodity-based industry. Transgenic maize (Zea mays L.) seed containing cellulase protein in embryo tissue, with protein localized to the endoplasmic reticulum, cell wall or vacuole, allows the recovery of commercial amounts of enzyme. E1 cellulase, an endo-beta-1,4-glucanase from Acidothermus cellulolyticus, was recovered at levels greater than 16% total soluble protein (TSP) in single seed. More significantly, cellobiohydrolase I (CBH I), an exocellulase from Trichoderma reesei, also accumulated to levels greater than 16% TSP in single seed, nearly 1000-fold higher than the expression in any other plant reported in the literature. The catalytic domain was the dominant form of E1 that was detected in the endoplasmic reticulum and vacuole, whereas CBH I holoenzyme was present in the cell wall. With one exception, individual transgenic events contained single inserts. Recovery of high levels of enzyme in T2 ears demonstrated that expression is likely to be stable over multiple generations. The enzymes were active in cleaving soluble substrate.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/biosíntesis , Plantas Modificadas Genéticamente/enzimología , Semillas/enzimología , Trichoderma/genética , Zea mays/enzimología , Agrobacterium tumefaciens/genética , Celulasa/genética , Celulasa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/economía , Celulosa 1,4-beta-Celobiosidasa/genética , Marcación de Gen , Vectores Genéticos , Plantas Modificadas Genéticamente/microbiología , Transformación Genética , Trichoderma/enzimología , Zea mays/genética , Zea mays/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA