Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
J Am Chem Soc ; 146(37): 25878-25887, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39226394

RESUMEN

The highly efficient synthesis of chiral indolines fused with an azabicyclo[2.2.1]heptanone moiety is achieved by an asymmetric dearomatization reaction of indoles with cyclobutanones. A new chiral imidodiphosphorimidate (IDPi) catalyst is synthesized and exhibits extraordinary activity in promoting a cascade Friedel-Crafts/semipinacol rearrangement. Target molecules are prepared in good yields (up to 95%) with excellent enantioselectivity (up to 98% ee) with operational convenience. Combined experimental and computational studies provide detailed mechanistic insights into the energy landscape and origin of the stereochemical induction of the reaction.

2.
Org Lett ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39331508

RESUMEN

An efficient Ir-catalyzed asymmetric allylic amination reaction of alkyl-substituted allylic carbonates is disclosed. With the Krische iridium complex as the catalyst, asymmetric allylic amination of alkyl-substituted allylic carbonates with pyridones proceeds effectively, affording pyridone derivatives containing a stereocenter α to the nitrogen atom in excellent yields and enantioselectivity (up to 99% yield, 95% ee). This catalytic system broadens the substrate scope of the reaction compared with that of the known catalytic systems. This reaction can also be conducted on a gram scale, further enhancing its potential for synthetic application.

3.
J Am Chem Soc ; 146(39): 26630-26638, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39293091

RESUMEN

Owing to substantial advances in the past several decades, transition-metal-catalyzed asymmetric reactions have garnered considerable attention as pivotal methods for constructing chiral molecules from abundant, readily available achiral counterparts. These advances are largely attributed to the development of chiral ligands that control stereochemistry through steric repulsion and other noncovalent interactions between the ligands and functional groups or prochiral centers on the substrates. However, stereocontrol weakens dramatically with increasing distance between the reaction site and the functional group or prochiral center. Herein, we report a symphonic strategy for remote stereocontrol of Rh(III)-catalyzed asymmetric benzylic C-H bond addition reactions of diarylmethanes in which the two aryl motifs differ at the meta and/or para position. Specifically, catalysts bearing a new type of chiral cyclopentadienyl (Cp) ligand differentiate between the two aromatic rings of the diarylmethane by arene-selective η6 coordination, setting up an opportunity for ligand-controlled stereoselective benzylic deprotonation and subsequent stereoselective addition to the 1,1-bis(arylsulfonyl)ethylene.

4.
Chem Sci ; 15(27): 10477-10490, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38994406

RESUMEN

Ferroptosis has emerged as a form of programmed cell death and exhibits remarkable promise for anticancer therapy. However, it is challenging to discover ferroptosis inducers with new chemotypes and high ferroptosis-inducing potency. Herein, we report a new series of ferrocenyl-appended GPX4 inhibitors rationally designed in a "one stone kills two birds" strategy. Ferroptosis selectivity assays, GPX4 inhibitory activity and CETSA experiments validated the inhibition of novel compounds on GPX4. In particular, the ROS-related bioactivity assays highlighted the ROS-inducing ability of 17 at the molecular level and their ferroptosis enhancement at the cellular level. These data confirmed the dual role of ferrocene as both the bioisostere motif maintaining the inhibition capacity of certain molecules with GPX4 and also as the ROS producer to enhance the vulnerability to ferroptosis of cancer cells, thereby attenuating tumor growth in vivo. This proof-of-concept study of ferrocenyl-appended ferroptosis inducers via rational design may not only advance the development of ferroptosis-based anticancer treatment, but also illuminate the multiple roles of the ferrocenyl component, thus opening the way to novel bioorganometallics for potential disease therapies.

5.
J Int Med Res ; 52(7): 3000605241261893, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39053448

RESUMEN

Abdominal pregnancies are a rare form of ectopic pregnancy with omentum pregnancies being even rarer. Ectopic pregnancy should be diagnosed and terminated early to prevent the risk of harm to the mother. This case report describes a rare case of omentum pregnancy with severe hemoperitoneum. The patient had not visited a doctor until she failed to menstruate for 3 months, by which point she had developed severe hypogastralgia. The patient was diagnosed with a ruptured ectopic pregnancy after ultrasonography. The omentum pregnancy was complicated by severe hemoperitoneum, which was confirmed by emergency laparotomy. The patient was treated successfully with fetal extraction and partial omentectomy. Ultrasound examination in early pregnancy is essential to detect and treat ectopic pregnancies as early as possible, as surgery is usually required for abdominal pregnancies. Prompt treatment of ectopic pregnancies is critical, as an omentum pregnancy is dangerous and may result in severe intraperitoneal bleeding.


Asunto(s)
Hemoperitoneo , Epiplón , Humanos , Femenino , Hemoperitoneo/cirugía , Hemoperitoneo/etiología , Hemoperitoneo/diagnóstico , Embarazo , Epiplón/cirugía , Epiplón/patología , Adulto , Embarazo Abdominal/cirugía , Embarazo Abdominal/diagnóstico , Ultrasonografía , Embarazo Ectópico/cirugía , Embarazo Ectópico/diagnóstico , Embarazo Ectópico/diagnóstico por imagen
6.
J Org Chem ; 89(16): 11487-11501, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39077910

RESUMEN

Rational design and development of organic reactions are lofty goals in synthetic chemistry. Quantitative description of the properties of molecules and reactions by physical organic parameters plays an important role in this regard. In this Article, we report an energy scale, namely, electrophile-arene affinity (EAA), for evaluating the thermodynamics of electrophilic dearomatization reactions, a class of important transformations that can rapidly build up molecular complexity and structural diversity by converting planar aromatic compounds into three-dimensional cyclic molecules. The acquisition of EAA data can be readily achieved by theoretically calculating the enthalpy changes (ΔH) of the hypothetical reactions of various (cationic) electrophiles with aromatic systems (taking the 1-methylnaphthalen-2-olate ion as an example in this study). Linear correlations are found between the calculated ΔH values and established physical organic parameters such as the percentage of buried volume %VBur (steric effect), Hammett's σ or Brown's σ+ (electronic effect), and Mayr's E (reaction kinetics). Careful analysis of the ΔH values leads to the rational design of a dearomative alkynylation reaction using alkynyl hypervalent iodonium reagents as the electrophiles.

7.
Chem Commun (Camb) ; 60(53): 6753-6756, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38863330

RESUMEN

An efficient Rh(III)-catalyzed enantioselective C-H alkynylation of isoquinolines is disclosed. The C-H alkynylation of 1-aryl isoquinolines with hypervalent iodine-alkyne reagents proceeded in DMA at room temperature in the presence of 2.5 mol% chiral SCpRh(III) complex along with 20 mol% AgSbF6, providing axially chiral alkynylated 1-aryl isoquinolines in excellent yields (up to 93%) and enantioselectivity (up to 95% ee). The diverse transformations of the product further enhance the potential utility of this reaction.

8.
J Am Chem Soc ; 146(25): 16982-16989, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38870424

RESUMEN

Catalytic asymmetric dearomatization (CADA) reactions have evolved into an efficient strategy for accessing chiral polycyclic and spirocyclic scaffolds from readily available planar aromatics. Despite the significant developments, the CADA reaction of naphthalenes remains underdeveloped. Herein, we report a Gd(III)-catalyzed asymmetric dearomatization reaction of naphthalene with a chiral PyBox ligand via visible-light-enabled [4 + 2] cycloaddition. This reaction features application of a chiral Gd/PyBox complex, which regulates the reactivity and selectivity simultaneously, in excited-state catalysis. A wide range of functional groups is compatible with this protocol, giving the highly enantioenriched bridged polycycles in excellent yields (up to 96%) and selectivity (up to >20:1 chemoselectivity, >20:1 dr, >99% ee). The synthetic utility is demonstrated by a 2 mmol scale reaction, removal of directing group, and diversifications of products. Preliminary mechanistic experiments are performed to elucidate the reaction mechanism.

9.
Nat Commun ; 15(1): 2462, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503749

RESUMEN

Medium-sized-ring compounds have been recognized as challenging synthetic targets in organic chemistry. Especially, the difficulty of synthesis will be augmented if an E-olefin moiety is embedded. Recently, photo-induced dearomative cycloaddition reactions that proceed via energy transfer mechanism have witnessed significant developments and provided powerful methods for the organic transformations that are not easily realized under thermal conditions. Herein, we report an intramolecular dearomative [5 + 4] cycloaddition of naphthalene-derived vinylcyclopropanes under visible-light irradiation and a proper triplet photosensitizer. The reaction affords dearomatized polycyclic molecules possessing a nine-membered-ring with an E-olefin moiety in good yields (up to 86%) and stereoselectivity (up to 8.8/1 E/Z). Detailed computational studies reveal the origin behind the favorable formation of the thermodynamically less stable isomers. Diverse derivations of the dearomatized products have also been demonstrated.

10.
Chem Sci ; 15(11): 4114-4120, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38487217

RESUMEN

C-H functionalization and dearomatization constitute fundamental transformations of aromatic compounds, which find wide applications in various research areas. However, achieving both transformations from the same substrates with a single catalyst by operating a distinct mechanism remains challenging. Here, we report a photocatalytic strategy to modulate the reaction pathways that can be directed toward either C-H functionalization or dearomatization under redox-neutral or net-reductive conditions, respectively. Two sets of indoles and indolines bearing tertiary alcohols are divergently furnished with good yields and high selectivity. The key to success is the introduction of isoazatruxene ITN-2 as a novel photocatalyst (PC), which outperforms the commonly used PCs. The ready synthesis and high modulability of isoazatruxene type PCs indicate their great application potential.

11.
Org Lett ; 26(7): 1501-1505, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38349077

RESUMEN

Asymmetric C-H trifluoromethylalkylation represents a novel and straightforward synthetic method for the construction of chiral CF3-containing compounds. However, the reported examples remain limited, given the challenges of reactivity and enantioselective control. Herein, we report a SCpRh(III)-catalyzed asymmetric aryl and alkenyl C-H trifluoromethylalkylation reaction with ß-trifluoromethyl-α,ß-unsaturated ketones. The chiral CF3-bearing adducts were obtained in moderate to good yields with high enantioselectivity (up to 81% yield and 96% ee). The reaction features mild conditions and broad substrate scope. The chiral CF3-bearing products could undergo diverse functional group transformations.

12.
J Am Chem Soc ; 146(7): 4333-4339, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38324359

RESUMEN

Ru/Cu dual catalysis has been applied for Z-retentive asymmetric allylic substitution reactions of aldimine esters. This reaction provides an enantioselective synthesis of chiral Z-olefins in high yields (up to 91% yield) with excellent enantioselectivity (up to 98% ee) under mild conditions. The previously unreacted trisubstituted allylic electrophiles under Ir catalytic system are found to be compatible, affording the stereoretentive products in either Z- or E-form. Both linear and branched allylic electrophiles are suitable substrates with excellent reaction outcomes. Notably, Ru and Cu complexes are added in one-pot and simplifies the manipulation of this protocol and self-sorting phenomena could be observed in this Ru/Cu dual catalytic system.

13.
Angew Chem Int Ed Engl ; 63(18): e202402109, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38421344

RESUMEN

This review explores the pivotal role of sulfur in advancing sustainable carbon-carbon (C-C) coupling reactions. The unique electronic properties of sulfur, as a soft Lewis base with significant mesomeric effect make it an excellent candidate for initiating radical transformations, directing C-H-activation, and facilitating cycloaddition and C-S bond dissociation reactions. These attributes are crucial for developing waste-free methodologies in green chemistry. Our mini-review is focused on existing sulfur-directed C-C coupling techniques, emphasizing their sustainability and comparing state-of-the-art methods with traditional approaches. The review highlights the importance of this research in addressing current challenges in organic synthesis and catalysis. The innovative use of sulfur in photocatalytic, electrochemical and metal-catalyzed processes not only exemplifies significant advancements in the field but also opens new avenues for environmentally friendly chemical processes. By focusing on atom economy and waste minimization, the analysis provides broad appeal and potential for future developments in sustainable organic chemistry.

14.
ACS Cent Sci ; 9(11): 2036-2043, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38033798

RESUMEN

As an important class of platform molecules, planar chiral ferrocene carbonyl compounds could be transformed into various functional groups offering facile synthesis of chiral ligands and catalysts. However, developing efficient and straightforward methods for accessing enantiopure planar chiral ferrocene carbonyl compounds, especially ferroceneformaldehydes, remains highly challenging. Herein, we report a rhodium(I)/phosphoramidite-catalyzed enantioselective C-H bond arylation of ferroceneformaldehydes. Readily available aryl halides such as aryl iodides, aryl bromides, and even aryl chlorides are suitable coupling partners in this transformation, leading to a series of planar chiral ferroceneformaldehydes in good yields and excellent enantioselectivity (up to 83% yield and >99% ee). The aldehyde group could be transformed into diverse functional groups smoothly, and enantiopure Ugi's amine and PPFA analogues could be synthesized efficiently. The latter was found to be a highly efficient ligand in Pd-catalyzed asymmetric allylic alkylation reactions. Mechanistic experiments supported the formation of imine intermediates as the key step during the reaction.

15.
J Am Chem Soc ; 145(40): 21752-21759, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37768553

RESUMEN

Chiral cyclobutane presents as a popular motif in natural products and biologically active molecules, and its derivatives have been extensively used as key synthons in organic synthesis. Herein, we report an efficient synthetic method toward enantioenriched cyclobutane derivatives. The reaction proceeds in a cascade fashion involving Ir-catalyzed asymmetric allylic etherification and visible-light induced [2 + 2] cycloaddition. Readily available branched allyl acetates and cinnamyl alcohols are directly used as the substrates under mild reaction conditions, providing a broad range of chiral cyclobutanes in good yields with excellent diastereo- and enantioselectivities (up to 12:1 dr, >99% ee). It is worth noting that all substrates and catalysts were simultaneously added without any separated step in this approach. The gram-scale reaction and diverse transformations of product further enhance the potential utility of this method.

16.
Chem Rev ; 123(16): 10079-10134, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37527349

RESUMEN

This review summarizes the advancements in rhodium-catalyzed asymmetric C-H functionalization reactions during the last two decades. Parallel to the rapidly developed palladium catalysis, rhodium catalysis has attracted extensive attention because of its unique reactivity and selectivity in asymmetric C-H functionalization reactions. In recent years, Rh-catalyzed asymmetric C-H functionalization reactions have been significantly developed in many respects, including catalyst design, reaction development, mechanistic investigation, and application in the synthesis of complex functional molecules. This review presents an explicit outline of catalysts and ligands, mechanism, the scope of coupling reagents, and applications.

17.
Angew Chem Int Ed Engl ; 62(37): e202305067, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37140049

RESUMEN

Enantioselective synthesis of N-N biaryl atropisomers is an emerging area but remains underexplored. The development of efficient synthesis of N-N biaryl atropisomers is in great demand. Herein, the construction of N-N biaryl atropisomers through iridium-catalyzed asymmetric C-H alkylation is reported for the first time. In the presence of readily available Ir precursor and Xyl-BINAP, a variety of axially chiral molecules based on indole-pyrrole skeleton were obtained in good yields (up to 98 %) with excellent enantioselectivity (up to 99 % ee). In addition, N-N bispyrrole atropisomers could also be synthesized in excellent yields and enantioselectivity. This method features perfect atom economy, wide substrate scope, and multifunctionalized products allowing diverse transformations.

18.
J Am Chem Soc ; 145(18): 10314-10321, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37126434

RESUMEN

Samarium diiodide (SmI2) mediated reductive coupling reactions are powerful methods for the construction of carbon-carbon bond in organic synthesis. Despite the extensive development in recent decades, successful examples of the corresponding asymmetric reactions remained scarce, probably due to the involvement of highly reactive radical intermediates. In this Article, we report an enantioselective dearomatization of indoles via SmI2-mediated intermolecular reductive coupling with ketones. The utilization of samarium reductant supported by chiral tridentate aminodiol ligands allows the facile synthesis of indoline molecules bearing two contiguous stereogenic centers in high yields (up to 99%) and stereoselectivity (up to 99:1 er and >20:1 dr). Combined experimental and computational investigations suggested that parallel single-electron transfer to each substrate from the chiral samarium reductant allows the radical-radical recombination in an enantioselective manner, which is a unique mechanistic scenario in SmI2-mediated reductive coupling reactions.

19.
J Am Chem Soc ; 145(21): 11745-11753, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37204420

RESUMEN

Herein, we report a highly efficient synthesis of enantioenriched aza-[3.3.1]-bicyclic enamines and ketones, a class of structural cores in many natural products, via asymmetric dearomatization of indoles with azodicarboxylates. The reaction is initiated by electrophilic amination and followed by aza-Prins cyclization/phenonium-like rearrangement. A newly developed fluorine-containing chiral phosphoric acid displays excellent activity in promoting this cascade reaction. The absence or presence of water as the additive directs the reaction pathway toward either enamine or ketone products in high yields (up to 93%) with high enantiopurity (up to 98% ee). Comprehensive density functional theory (DFT) calculations reveal the energy profile of the reaction and the origins of enantioselectivity and water-induced chemoselectivity.

20.
Chem Commun (Camb) ; 59(24): 3590-3593, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36883425

RESUMEN

An asymmetric allylic dearomatization reaction of 1-nitro-2-naphthol derivatives with Morita-Baylis-Hillman (MBH) adducts has been developed. By utilizing Pd catalyst derived from Pd(OAc)2 and Trost ligand (R,R)-L1, the reaction proceeded smoothly in 1,4-dioxane at room temperature, affording substituted ß-naphthalenones in good yields (up to 92%) and enantioselectivity (up to 90% ee). A range of substituted 1-nitro-2-naphthols and MBH adducts were found to be compatible under the optimized conditions. This reaction provides a convenient method for the synthesis of enantioenriched 1-nitro-ß-naphthalenone derivatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA