Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Vet Sci ; 11: 1393372, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983772

RESUMEN

Introduction: The ratio of lysine (Lys) to methionine (Met) with 3.0: 1 is confirmed as the "ideal" profile for milk protein synthesis, but whether this ratio is suitable for milk protein synthesis under HS needs to be further studied. Methods: To evaluate the molecular mechanism by which HS and Lys to Met ratios affect mammary cell functional capacity, an immortalized bovine mammary epithelial cell line (MAC-T) is incubated with 5 doses of Met while maintaining a constant concentration of Lys. The MAC-T cells was treated for 6 h as follow: Lys: Met 3.0: 1 (control 37°C and IPAA 42°C) or treatments under HS (42°C) with different ratios of Lys: Met at 2.0: 1 (LM20), 2.5: 1 (LM25), 3.5: 1 (LM35) and 4.0: 1 (LM40). RNA sequencing was used to assess transcriptome-wide alterations in mRNA abundance. Results: The significant difference between control and other groups was observed base on PCA analysis. A total of 2048 differentially expressed genes (DEGs) were identified in the IPAA group relative to the control group. Similarly, 226, 306, 148, 157 DEGs were detected in the LM20, LM25, LM35 and LM40 groups, respectively, relative to the IPAA group. The relative mRNA abundance of HSPA1A was upregulated and anti-apoptotic genes (BCL2L1 and BCL2) was down-regulated in the IPAA group, compared to the control group (p < 0.05). Compared with the IPAA group, the relative mRNA abundance of anti-apoptotic genes and casein genes (CSN1S2 and CSN2) was up-regulated in the LM25 group (p < 0.05). The DEGs between LM25 and IPAA groups were associated with the negative regulation of transcription RNA polymerase II promoter in response to stress (GO: 0051085, DEGs of BAG3, DNAJB1, HSPA1A) as well as the mTOR signaling pathway (ko04150, DEGs of ATP6V1C2, WNT11, WNT3A, and WNT9A). Several DEGs involved in amino acids metabolism (AFMID, HYKK, NOS3, RIMKLB) and glycolysis/gluconeogenesis (AFMID and MGAT5B) were up-regulated while DEGs involved in lipolysis and beta-oxidation catabolic processes (ALOX12 and ALOX12B) were down-regulated. Conclusion: These results suggested that increasing Met supply (Lys: Met at 2.5: 1) may help mammary gland cells resist HS-induced cell damage, while possibly maintaining lactation capacity through regulation of gene expression.

2.
Front Microbiol ; 14: 1175880, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396385

RESUMEN

Introduction: This study was conducted to assess the effect of mixed isoacid (MI) supplementation on fermentation characteristics, nutrient apparent digestibility, growth performance, and rumen bacterial community in yaks. Methods: A 72-h in vitro fermentation experiment was performed on an ANKOM RF gas production system. MI was added to five treatments at doses of 0, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% on the dry matter (DM) basis of substrates using a total of 26 bottles (4 bottles per treatment and 2 bottles as the blank). Cumulative gas production was measured at 4, 8, 16, 24, 36, 48, and 72 h. Fermentation characteristics including pH, the concentration of volatile fatty acids (VFAs), ammonia nitrogen (NH3-N), microbial proteins (MCP), and the disappearance rate of dry matter (DMD), neutral detergent fiber (NDFD), and acid detergent fiber (ADFD) were measured after a 72-h in vitro fermentation to determine an optimal MI dose. Fourteen Maiwa male yaks (180-220 kg, 3-4 years old of age) were randomly assigned to the control group (without MI, n = 7) and the supplemented MI group (n = 7, supplemented with 0.3% MI on DM basis) for the 85-d animal experiment. Growth performance, nutrient apparent digestibility, rumen fermentation parameters, and rumen bacterial diversity were measured. Results: Supplementation with 0.3% MI achieved the greatest propionate and butyrate content, NDFD and ADFD compared with other groups (P < 0.05). Therefore, 0.3% was used for the animal experiment. Supplementation with 0.3% MI significantly increased the apparent digestibility of NDF and ADF (P < 0.05), and the average daily weight gain of yaks (P < 0.05) without affecting the ruminal concentration of NH3-N, MCP, and VFAs. 0.3% MI induced rumen bacteria to form significantly different communities when compared to the control group (P < 0.05). g__norank_f__Bacteroidales_BS11_gut_group, g__norank_f__Muribaculaceae, g__Veillonellaceae_UCG-001, g__Ruminococcus_gauvreauii_group, g__norank_f__norank_o__RF39 and g__Flexilinea were identified as the biomarker taxa in responding to supplementation with 0.3% MI. Meanwhile, the abundance of g__Flexilinea and g__norank_f__norank_o__RF39 were significantly positively correlated with the NDF digestibility (P < 0.05). Conclusion: In conclusion, supplementation with 0.3% MI improved the in vitro rumen fermentation characteristics, feed fiber digestibility, and growth performance in yaks, which was associated with changes of the abundance of g__Flexilinea and g__norank_f__norank_o__RF39.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA