Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Med Phys ; 49(6): 3550-3563, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35443080

RESUMEN

PURPOSE: To develop an online graphic processing unit (GPU)-accelerated Monte Carlo-based adaptive radiation therapy (ART) workflow for pencil beam scanning (PBS) proton therapy to address interfraction anatomical changes in patients treated with PBS. METHODS AND MATERIALS: A four-step workflow was developed using our in-house developed GPU-accelerated Monte Carlo-based treatment planning system to implement online Monte Carlo-based ART for PBS. The first step conducts diffeomorphic demon-based deformable image registration (DIR) to propagate contours on the initial planning CT (pCT) to the verification CT (vCT) to form a new structure set. The second step performs forward dose calculation of the initial plan on the vCT with the propagated contours after manual approval (possible modifications involved). The third step triggers a reoptimization of the plan depending on whether the verification dose meets the clinical requirements or not. A robust evaluation will be done for both the verification plan in the second step and the reopotimized plan in the third step. The fourth step involves a two-stage (before and after delivery) patient-specific quality assurance (PSQA) of the reoptimized plan. The before-delivery PSQA is to compare the plan dose to the dose calculated using an independent fast open-source Monte Carlo code, MCsquare. The after-delivery PSQA is to compare the plan dose to the dose recalculated using the log file (spot MU, spot position, and spot energy) collected during the delivery. Jaccard index (JI), dice similarity coefficients (DSCs), and Hausdorff distance (HD) were used to assess the quality of the propagated contours in the first step. A commercial plan evaluation software, ClearCheck™, was integrated into the workflow to carry out efficient plan evaluation. 3D Gamma analysis was used during the fourth step to ensure the accuracy of the plan dose from reoptimization. Three patients with three different disease sites were chosen to evaluate the feasibility of the online ART workflow for PBS. RESULTS: For all three patients, the propagated contours were found to have good volume conformance [JI (lowest-highest: 0.833-0.983) and DSC (0.909-0.992)] but suboptimal boundary coincidence [HD (2.37-20.76 mm)] for organs-at-risk. The verification dose evaluated by ClearCheck™ showed significant degradation of the target coverage due to the interfractional anatomical changes. Reoptimization on the vCT resulted in great improvement of the plan quality to a clinically acceptable level. 3D Gamma analyses of PSQA confirmed the accuracy of the plan dose before delivery (mean Gamma index = 98.74% with a threshold of 2%/2 mm/10%), and after delivery based on the log files (mean Gamma index = 99.05% with a threshold of 2%/2 mm/10%). The average time cost for the complete execution of the workflow was around 858 s, excluding the time for manual intervention. CONCLUSION: The proposed online ART workflow for PBS was demonstrated to be efficient and effective by generating a reoptimized plan that significantly improved the plan quality.


Asunto(s)
Terapia de Protones , Estudios de Factibilidad , Humanos , Método de Montecarlo , Terapia de Protones/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
2.
Med Phys ; 48(11): 6634-6641, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34608990

RESUMEN

PURPOSE: To measure diode sensitivity degradation (DSD) induced by cumulative proton dose delivered to a commercial daily quality assurance (QA) device. METHODS: At our institution, six Daily QA 3 (DQA3, Sun Nuclear Corporation, Melbourne, FL, USA) devices have been used for daily proton pencil beam scanning QA in four proton gantry rooms over a span of 4 years. DQA3 diode counts were cross-calibrated using a homogenous field with a known dose of 1 Gy. The DSD rate (ΔR%/100 Gy) was calculated using linear regression on time-series plots of diode counts and an estimate of cumulative dose per year based on the cross-calibration. The effect of DSD on daily QA spot position measurements was quantified by converting DSD to baseline spot position shift. RESULTS: The average dose delivered to the four inner DQA3 diodes was 104 ± 5 Gy/year, and the rate of DSD was -5.1% ± 1.0/100 Gy with the exception of one DQA3 device that had a significantly higher rate of DSD (-12%/100 Gy). The R2 s of the linear fit to time-series plots were between 0.92 and 0.98. The DSD rates were not constant but decreases with accumulated doses. The four center diodes, which received 40% of the cumulative dose received by inner diodes, had a DSD rate of -7.2% ± 0.9/100 Gy. For our daily QA program, 1 year of DSD was equivalent to a 0.2 mm shift in spot position. CONCLUSIONS: The DSD rate of DQA3 diodes determined by long-term proton daily QA data was about -5%/100 Gy, which is more than 10 times greater than the reported DSD rate from photon irradiation. DQA3 diodes may be used for daily proton QA programs, provided that they are recalibrated at an appropriate frequency that should be determined specifically for different daily QA programs.


Asunto(s)
Terapia de Protones , Protones , Garantía de la Calidad de Atención de Salud , Radiación Ionizante , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
3.
Med Phys ; 48(9): 4812-4823, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34174087

RESUMEN

PURPOSE: The multiple energy extraction (MEE) delivery technique for synchrotron-based proton delivery systems reduces beam delivery time by decelerating the beam multiple times during one accelerator spill, but this might cause additional plan quality degradation due to intrafractional motion. We seek to determine whether MEE causes significantly different plan quality degradation compared to single energy extraction (SEE) for lung cancer treatments due to the interplay effect. METHODS: Ten lung cancer patients treated with IMPT at our institution were nonrandomly sampled based on a representative range of tumor motion amplitudes, tumor volumes, and respiratory periods. Dose-volume histogram (DVH) indices from single-fraction SEE and MEE four-dimensional (4D) dynamic dose distributions were compared using the Wilcoxon signed-rank test. Distributions of monitor units (MU) to breathing phases were investigated for features associated with plan quality degradation. SEE and MEE DVH indices were compared in fractionated deliveries of the worst-case patient treatment scenario to evaluate the impact of fractionation. RESULTS: There were no clinically significant differences in target mean dose, target dose conformity, or dose to organs-at-risk between SEE and MEE in single-fraction delivery. Three patients had significantly worse dose homogeneity with MEE compared to SEE (single-fraction mean D5% -D95% increased by up to 9.6% of prescription dose), and plots of MU distribution to breathing phases showed synchronization patterns with MEE but not SEE. However, after 30 fractions the patient in the worst-case scenario had clinically acceptable target dose homogeneity and coverage with MEE (mean D5% -D95% increased by 1% compared to SEE). CONCLUSIONS: For some patients with breathing periods close to the mean spill duration, MEE resulted in significantly worse single-fraction target dose homogeneity compared to SEE due to the interplay effect. However, this was mitigated by fractionation, and target dose homogeneity and coverage were clinically acceptable after 30 fractions with MEE.


Asunto(s)
Neoplasias Pulmonares , Terapia de Protones , Radioterapia de Intensidad Modulada , Tomografía Computarizada Cuatridimensional , Humanos , Neoplasias Pulmonares/radioterapia , Protones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Sincrotrones
4.
Med Phys ; 47(6): 2558-2574, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32153029

RESUMEN

PURPOSE: To commission an open source Monte Carlo (MC) dose engine, "MCsquare" for a synchrotron-based proton machine, integrate it into our in-house C++-based I/O user interface and our web-based software platform, expand its functionalities, and improve calculation efficiency for intensity-modulated proton therapy (IMPT). METHODS: We commissioned MCsquare using a double Gaussian beam model based on in-air lateral profiles, integrated depth dose of 97 beam energies, and measurements of various spread-out Bragg peaks (SOBPs). Then we integrated MCsquare into our C++-based dose calculation code and web-based second check platform "DOSeCHECK." We validated the commissioned MCsquare based on 12 different patient geometries and compared the dose calculation with a well-benchmarked GPU-accelerated MC (gMC) dose engine. We further improved the MCsquare efficiency by employing the computed tomography (CT) resampling approach. We also expanded its functionality by adding a linear energy transfer (LET)-related model-dependent biological dose calculation. RESULTS: Differences between MCsquare calculations and SOBP measurements were <2.5% (<1.5% for ~85% of measurements) in water. The dose distributions calculated using MCsquare agreed well with the results calculated using gMC in patient geometries. The average 3D gamma analysis (2%/2 mm) passing rates comparing MCsquare and gMC calculations in the 12 patient geometries were 98.0 ± 1.0%. The computation time to calculate one IMPT plan in patients' geometries using an inexpensive CPU workstation (Intel Xeon E5-2680 2.50 GHz) was 2.3 ± 1.8 min after the variable resolution technique was adopted. All calculations except for one craniospinal patient were finished within 3.5 min. CONCLUSIONS: MCsquare was successfully commissioned for a synchrotron-based proton beam therapy delivery system and integrated into our web-based second check platform. After adopting CT resampling and implementing LET model-dependent biological dose calculation capabilities, MCsquare will be sufficiently efficient and powerful to achieve Monte Carlo-based and LET-guided robust optimization in IMPT, which will be done in the future studies.


Asunto(s)
Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Transferencia Lineal de Energía , Método de Montecarlo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
5.
Med Phys ; 47(2): 745-752, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31758864

RESUMEN

PURPOSE: The dose-averaged linear energy transfer (LETd ) for intensity-modulated proton therapy (IMPT) calculated by one-dimensional (1D) analytical models deviates from more accurate but time-consuming Monte Carlo (MC) simulations. We developed a fast hybrid three-dimensional (3D) analytical LETd calculation that is more accurate than 1D analytical model. METHODS: We used the Geant4 MC code to generate 3D LETd distributions of monoenergetic proton beams in water for all energies and used a customized error function to fit the LETd lateral profiles at various depths to the MC simulation. The 3D LETd calculation kernel was a lookup table of these fitted coefficients, and LETd was determined directly from spot energies and voxel coordinates during analytical dose calculations. We validated our new method by comparing the calculated LETd distributions to MC results using 3D Gamma index analysis with 3%/2 mm criteria in 12 patient geometries. The significance of the improvement in Gamma index analysis passing rates over the 1D analytical model was determined using the Wilcoxon rank-sum test. RESULTS: The passing rate of 3D Gamma analysis comparing LETd distributions from the hybrid 3D method and the 1D method to MC simulations was significantly improved from 94.0% ± 2.5% to 98.0% ± 1.0% (P = 0.0003). The typical time to calculate dose and LETd simultaneously using an Intel Xeon E5-2680 2.50 GHz workstation was approximately 2.5 min. CONCLUSIONS: Our new method significantly improved the LETd calculation accuracy compared to the 1D method while maintaining significantly shorter calculation time even comparing with the GPU-based fast MC code.


Asunto(s)
Transferencia Lineal de Energía , Terapia de Protones/métodos , Radioterapia de Intensidad Modulada/métodos , Algoritmos , Simulación por Computador , Relación Dosis-Respuesta en la Radiación , Humanos , Modelos Biológicos , Método de Montecarlo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
6.
Technol Cancer Res Treat ; 18: 1533033819887182, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31755362

RESUMEN

PURPOSE: To describe and validate the dose calculation algorithm of an independent second-dose check software for spot scanning proton delivery systems with full width at half maximum between 5 and 14 mm and with a negligible spray component. METHODS: The analytical dose engine of our independent second-dose check software employs an altered pencil beam algorithm with 3 lateral Gaussian components. It was commissioned using Geant4 and validated by comparison to point dose measurements at several depths within spread-out Bragg peaks of varying ranges, modulations, and field sizes. Water equivalent distance was used to compensate for inhomogeneous geometry. Twelve patients representing different disease sites were selected for validation. Dose calculation results in water were compared to a fast Monte Carlo code and ionization chamber array measurements using dose planes and dose profiles as well as 2-dimensional-3-dimensional and 3-dimensional-3-dimensional γ-index analysis. Results in patient geometry were compared to Monte Carlo simulation using dose-volume histogram indices, 3-dimensional-3-dimensional γ-index analysis, and inpatient dose profiles. RESULTS: Dose engine model parameters were tuned to achieve 1.5% agreement with measured point doses. The in-water γ-index passing rates for the 12 patients using 3%/2 mm criteria were 99.5% ± 0.5% compared to Monte Carlo. The average inpatient γ-index analysis passing rate compared to Monte Carlo was 95.8% ± 2.9%. The average difference in mean dose to the clinical target volume between the dose engine and Monte Carlo was -0.4% ± 1.0%. For a typical plan, dose calculation time was 2 minutes on an inexpensive workstation. CONCLUSIONS: Following our commissioning process, the analytical dose engine was validated for all treatment sites except for the lung or for calculating dose-volume histogram indices involving point doses or critical structures immediately distal to target volumes. Monte Carlo simulations are recommended for these scenarios.


Asunto(s)
Terapia de Protones , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Algoritmos , Humanos , Método de Montecarlo , Neoplasias/radioterapia , Fantasmas de Imagen , Terapia de Protones/métodos , Radiometría/instrumentación , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Reproducibilidad de los Resultados
7.
Med Phys ; 46(1): 5-14, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30339270

RESUMEN

PURPOSE: At our institution, all proton patient plans undergo patient-specific quality assurance (PSQA) prior to treatment delivery. For intensity-modulated proton beam therapy, quality assurance is complex and time consuming, and it may involve multiple measurements per field. We reviewed our PSQA workflow and identified the steps that could be automated and developed solutions to improve efficiency. METHODS: We used the treatment planning system's (TPS) capability to support C# scripts to develop an Eclipse scripting application programming interface (ESAPI) script and automate the preparation of the verification phantom plan for measurements. A local area network (LAN) connection between our measurement equipment and shared database was established to facilitate equipment control, measurement data transfer, and storage. To improve the analysis of the measurement data, a Python script was developed to automatically perform a 2D-3D γ-index analysis comparing measurements in the plane of a two-dimensional detector array with TPS predictions in a water phantom for each acquired measurement. RESULTS: Device connection via LAN granted immediate access to the plan and measurement information for downstream analysis using an online software suite. Automated scripts applied to verification plans reduced time from preparation steps by at least 50%; time reduction from automating γ-index analysis was even more pronounced, dropping by a factor of 10. On average, we observed an overall time savings of 55% in completion of the PSQA per patient plan. CONCLUSIONS: The automation of the routine tasks in the PSQA workflow significantly reduced the time required per patient, reduced user fatigue, and frees up system users from routine and repetitive workflow steps allowing increased focus on evaluating key quality metrics.


Asunto(s)
Terapia de Protones/métodos , Automatización , Humanos , Fantasmas de Imagen , Control de Calidad , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada
8.
Adv Radiat Oncol ; 3(3): 412-420, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30197942

RESUMEN

PURPOSE: Multiple energy extraction (MEE) is a technology that was recently introduced by Hitachi for its spot-scanning proton treatment system, which allows multiple energies to be delivered in a single synchrotron spill. The purpose of this paper is to investigate how much beam delivery time (BDT) can be reduced with MEE compared with single energy extraction (SEE), in which one energy is delivered per spill. METHODS AND MATERIALS: A recently developed model based on BDT measurements of our synchrotron's delivery performance was used to compute BDT. The total BDT for 2694 beam deliveries in a cohort of 79 patients treated at our institution was computed in both SEE and 9 MEE configurations to determine BDT reduction. The cohort BDT reduction was also calculated for hypothetical accelerators with increased deliverable charge and compared with the results of our current delivery system. RESULTS: A vendor-provided MEE configuration with 4 energy layers per spill reduced the total BDT on average by 35% (41 seconds) compared with SEE, with up to 65% BDT reduction for individual fields. Adding an MEE layer reduced the total BDT by <1% of SEE BDT. However, improving charge recapture efficiency increased BDT savings by up to 42% of SEE BDT. CONCLUSIONS: The MEE delivery technique reduced the total BDT by 35%. Increasing the charge per spill and charge recapture efficiency is necessary to further reduce BDT and thereby take full advantage of our MEE system's potential to improve treatment delivery efficiency and operational throughput.

9.
Med Phys ; 45(3): 1040-1049, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29394447

RESUMEN

PURPOSE: The aim of this work was to develop an efficient daily quality assurance (QA) program with strict tolerance levels for pencil beam scanning (PBS) proton radiotherapy featuring simultaneous dosimetric testing on a single, nonuniform field. METHODS: A nonuniform field measuring beam output, proton range, and spot position was designed for delivery onto a Sun Nuclear Daily-QA 3 device. A custom acrylic block permitted simultaneous measurement of low- and high-energy proton ranges in addition to beam output. Sensitivities to output, range, and spot position were evaluated to quantitate the device's response. Reproducibility tests were used to identify and control sources of measurement error as well as to assess the QA procedure's robustness. This procedure was implemented in each of our four treatment rooms independently; 4-6 months of daily QA measurements were collected. RESULTS: The 1% output, 0.5 mm range, and 1.5 mm spot position tolerances derived from preliminary tests were tighter overall than tolerances found in the literature and equivalent to the limits used for proton system commissioning. The simplicity and automation of the procedure reduced the time required for daily QA to 10 min per treatment room, and competition for beam between multiple treatment rooms was minimized. CONCLUSIONS: An efficient daily PBS QA procedure can be performed using a single, nonuniform field on a nondedicated QA device. A thorough quantitation of the device's response and careful control of measurement uncertainties allowed daily tolerances to match commissioning standards.


Asunto(s)
Terapia de Protones , Garantía de la Calidad de Atención de Salud/métodos , Terapia de Protones/efectos adversos , Terapia de Protones/normas , Protección Radiológica , Radiometría , Radioterapia de Intensidad Modulada , Incertidumbre
10.
Med Phys ; 44(10): 5081-5088, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28777447

RESUMEN

PURPOSE: To accurately model the beam delivery time (BDT) for a synchrotron-based proton spot scanning system using experimentally determined beam parameters. METHODS: A model to simulate the proton spot delivery sequences was constructed, and BDT was calculated by summing times for layer switch, spot switch, and spot delivery. Test plans were designed to isolate and quantify the relevant beam parameters in the operation cycle of the proton beam therapy delivery system. These parameters included the layer switch time, magnet preparation and verification time, average beam scanning speeds in x- and y-directions, proton spill rate, and maximum charge and maximum extraction time for each spill. The experimentally determined parameters, as well as the nominal values initially provided by the vendor, served as inputs to the model to predict BDTs for 602 clinical proton beam deliveries. The calculated BDTs (TBDT ) were compared with the BDTs recorded in the treatment delivery log files (TLog ): ∆t = TLog -TBDT . RESULTS: The experimentally determined average layer switch time for all 97 energies was 1.91 s (ranging from 1.9 to 2.0 s for beam energies from 71.3 to 228.8 MeV), average magnet preparation and verification time was 1.93 ms, the average scanning speeds were 5.9 m/s in x-direction and 19.3 m/s in y-direction, the proton spill rate was 8.7 MU/s, and the maximum proton charge available for one acceleration is 2.0 ± 0.4 nC. Some of the measured parameters differed from the nominal values provided by the vendor. The calculated BDTs using experimentally determined parameters matched the recorded BDTs of 602 beam deliveries (∆t = -0.49 ± 1.44 s), which were significantly more accurate than BDTs calculated using nominal timing parameters (∆t = -7.48 ± 6.97 s). CONCLUSIONS: An accurate model for BDT prediction was achieved by using the experimentally determined proton beam therapy delivery parameters, which may be useful in modeling the interplay effect and patient throughput. The model may provide guidance on how to effectively reduce BDT and may be used to identifying deteriorating machine performance.


Asunto(s)
Modelos Teóricos , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA