Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 947: 174598, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38992350

RESUMEN

The ultralow interfacial tension between the oil and aqueous phases and the solubilization characteristics in microemulsion systems make them useful for surface cleaning and enhanced oil recovery applications. Microemulsions can form an adsorbed barrier on rock, reducing the acid-rock reaction rate. However, as acid retardation additives, the adsorption patterns of microemulsions are not clearly defined. In this study, microemulsions composed of various electrical surfactants, oil cores, and oil core additives were obtained, and their phase behaviors were investigated. Through adsorption and reaction experiments, cleaning microemulsions that enhance adsorption effects were identified, and their adsorption patterns and adaptability under flow conditions were evaluated. The results demonstrate that incorporating negatively charged polar compounds forms an enhanced adsorption microemulsion characterized by an average droplet size of less than 30 nm after mixing with the acid. The introduction of negatively charged polar compounds resulted in a 177 % increase in adsorption and an 81 % improvement in static retardation effect. Dynamic adsorption tests indicate that the pseudo-second-order model more accurately describes the kinetics of dynamic adsorption of microemulsions on rock surfaces. Under a fixed flow rate, the dynamic retardation rate increased with the concentration of the microemulsion. In practical acidification, the adsorption of microemulsions results mainly from combined electrostatic forces and fluid scouring, characterized by a continuous process of adsorption and desorption. Scanning electron microscope also confirmed that microemulsions can form an adsorptive film on the rock, reducing the acid-rock reaction rate. This study offers practical guidelines for the selection and application of retardation additives, aiming to enhance the ecological compatibility of chemical treatments in low-permeability limestone reservoirs.

2.
J Hazard Mater ; 468: 133833, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401215

RESUMEN

Increasing use of chemical dispersants for oil spills highlights the need to understand their adverse effects on marine microalgae and nutrient assimilation because the toxic components of crude oil can be more bioavailable. We employed the crude oil water-accommodated fraction (WAF) and chemically enhanced WAF (CEWAF) to compare different responses in marine microalgae (Phaeodactylum tricornutum) coupled with stable isotopic signatures. The concentration and proportion of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs), which are key toxic components in crude oil, increased after dispersant addition. CEWAF exposure caused higher percent growth inhibition and a lower chlorophyll-a level of microalgae than those after WAF exposure. Compared with WAF exposure, CEWAF led to an enhancement in the self-defense mechanism of P. tricornutum, accompanied by an increased content of extracellular polymeric substances. 13C-depletion and carbon assimilation were altered in P. tricornutum, suggesting more HMW PAHs could be utilized as carbon sources by microalgae under CEWAF. CEWAF had no significant effects on the isotopic fractionation or assimilation of nitrogen in P. tricornutum. Our study unveiled the impact on the growth, physiological response, and nutrient assimilation of microalgae upon WAF and CEWAF exposures. Our data provide new insights into the ecological effects of dispersant applications for coastal oil spills.


Asunto(s)
Diatomeas , Microalgas , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Petróleo/toxicidad , Petróleo/análisis , Agua , Contaminantes Químicos del Agua/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Carbono
3.
Chemosphere ; 336: 139174, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37301517

RESUMEN

Nanoplastics (NPs) are emerging pollutants posing risks to marine biota and human health due to their small size and high bioavailability. However, there are still knowledge gaps regarding effects of co-existing pollutants on NPs toxicity to marine organisms at their respective environmentally relevant concentrations. Herein we investigated developmental toxicity and histopathological alterations caused by co-exposure of polystyrene nanoplastics (PS-NPs) and bisphenol A (BPA) to marine medaka, Oryzias melastigma. Embryos at 6 h post-fertilization were exposed to 50-nm PS-NPs (55 µg/L) or BPA (100 µg/L) or co-exposed to a combination of both. Results showed that PS-NPs exhibited decreased embryonic heart rate, larval body length, and embryonic survival as well as larval deformities such as hemorrhaging and craniofacial abnormality. When co-exposed, BPA mitigated all the adverse developmental effects caused by PS-NPs. PS-NPs also led to an increase in histopathological condition index of liver with early inflammatory responses, while co-exposure of BPA with PS-NPs did not. Our data suggest that the toxicity reduction of PS-NPs in the presence of BPA might result from the decreased bioaccumulation of PS-NPs caused by the interaction between BPA and PS-NPs. This study unveiled the impact of BPA on the toxicity of nanoplastics in marine fish during early developmental stages and highlight the need of more research on the long-term effects of complex mixtures in the marine environment by applying omics approaches to better understand the toxicity mechanism.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Humanos , Poliestirenos/toxicidad , Oryzias/fisiología , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
4.
Toxics ; 11(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977001

RESUMEN

Oil spill is a major marine environmental pollution issue. Research regarding the long-term effects of oil spills on the early life stage of marine fish is still limited. In this study, the potential adverse impact of crude oil from one oil spill accident which occurred in the Bohai Sea on the early life stages of marine medaka (Oryzias melastigma, McClelland, 1839) was evaluated. A 96-h acute test (larvae) and a 21-d chronic test (embryo-larvae) of water-accommodated fractions (WAFs) from crude oil were conducted, respectively. The results of the acute test showed that only the highest concentration of WAFs (100.00%) significantly affected the mortality of larvae (p < 0.01) and that the 96 h-LC50 was 68.92% (4.11 mg·L-1 expressed as total petroleum hydrocarbons (TPHs)). Larval heart demonstrated histopathological alterations in all WAF-exposed groups. The chronic test results showed that, except for larval mortality, the total hatching success (%)/hatching time of embryos in WAF treatments was not significantly different from those of the control group (p > 0.05), and no malformation was found in surviving larvae after 21 d of exposure. Nevertheless, the exposed embryos and larvae in the highest concentration of WAFs (60.00%) demonstrated significantly reduced heart rate (p < 0.05) and increased mortality (p < 0.01), respectively. Overall, our results indicated that both acute and chronic WAF exposures had adverse impacts on the survival of marine medaka. In the early life stages, the heart of the marine medaka was the most sensitive organ which showed both structural alteration and cardiac dysfunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA