Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
IEEE Trans Cybern ; 54(1): 486-495, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37022240

RESUMEN

Finding the causal structure from a set of variables given observational data is a crucial task in many scientific areas. Most algorithms focus on discovering the global causal graph but few efforts have been made toward the local causal structure (LCS), which is of wide practical significance and easier to obtain. LCS learning faces the challenges of neighborhood determination and edge orientation. Available LCS algorithms build on conditional independence (CI) tests, they suffer the poor accuracy due to noises, various data generation mechanisms, and small-size samples of real-world applications, where CI tests do not work. In addition, they can only find the Markov equivalence class, leaving some edges undirected. In this article, we propose a GradieNt-based LCS learning approach (GraN-LCS) to determine neighbors and orient edges simultaneously in a gradient-descent way, and, thus, to explore LCS more accurately. GraN-LCS formulates the causal graph search as minimizing an acyclicity regularized score function, which can be optimized by efficient gradient-based solvers. GraN-LCS constructs a multilayer perceptron (MLP) to simultaneously fit all other variables with respect to a target variable and defines an acyclicity-constrained local recovery loss to promote the exploration of local graphs and to find out direct causes and effects of the target variable. To improve the efficacy, it applies preliminary neighborhood selection (PNS) to sketch the raw causal structure and further incorporates an l1 -norm-based feature selection on the first layer of MLP to reduce the scale of candidate variables and to pursue sparse weight matrix. GraN-LCS finally outputs LCS based on the sparse weighted adjacency matrix learned from MLPs. We conduct experiments on both synthetic and real-world datasets and verify its efficacy by comparing against state-of-the-art baselines. A detailed ablation study investigates the impact of key components of GraN-LCS and the results prove their contribution.

2.
Nucleic Acids Res ; 52(3): e16, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38088228

RESUMEN

Functional molecular module (i.e., gene-miRNA co-modules and gene-miRNA-lncRNA triple-layer modules) analysis can dissect complex regulations underlying etiology or phenotypes. However, current module detection methods lack an appropriate usage and effective model of multi-omics data and cross-layer regulations of heterogeneous molecules, causing the loss of critical genetic information and corrupting the detection performance. In this study, we propose a heterogeneous network co-clustering framework (HetFCM) to detect functional co-modules. HetFCM introduces an attributed heterogeneous network to jointly model interplays and multi-type attributes of different molecules, and applies multiple variational graph autoencoders on the network to generate cross-layer association matrices, then it performs adaptive weighted co-clustering on association matrices and attribute data to identify co-modules of heterogeneous molecules. Empirical study on Human and Maize datasets reveals that HetFCM can find out co-modules characterized with denser topology and more significant functions, which are associated with human breast cancer (subtypes) and maize phenotypes (i.e., lipid storage, drought tolerance and oil content). HetFCM is a useful tool to detect co-modules and can be applied to multi-layer functional modules, yielding novel insights for analyzing molecular mechanisms. We also developed a user-friendly module detection and analysis tool and shared it at http://www.sdu-idea.cn/FMDTool.


Asunto(s)
Neoplasias de la Mama , Análisis por Conglomerados , Redes Reguladoras de Genes , Zea mays , Femenino , Humanos , Neoplasias de la Mama/genética , Perfilación de la Expresión Génica/métodos , MicroARNs/genética , Fenotipo , Zea mays/genética
3.
Brief Funct Genomics ; 23(2): 128-137, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-37208992

RESUMEN

Determining cell types by single-cell transcriptomics data is fundamental for downstream analysis. However, cell clustering and data imputation still face the computation challenges, due to the high dropout rate, sparsity and dimensionality of single-cell data. Although some deep learning based solutions have been proposed to handle these challenges, they still can not leverage gene attribute information and cell topology in a sensible way to explore the consistent clustering. In this paper, we present scDeepFC, a deep information fusion-based single-cell data clustering method for cell clustering and data imputation. Specifically, scDeepFC uses a deep auto-encoder (DAE) network and a deep graph convolution network to embed high-dimensional gene attribute information and high-order cell-cell topological information into different low-dimensional representations, and then fuses them to generate a more comprehensive and accurate consensus representation via a deep information fusion network. In addition, scDeepFC integrates the zero-inflated negative binomial (ZINB) into DAE to model the dropout events. By jointly optimizing the ZINB loss and cell graph reconstruction loss, scDeepFC generates a salient embedding representation for clustering cells and imputing missing data. Extensive experiments on real single-cell datasets prove that scDeepFC outperforms other popular single-cell analysis methods. Both the gene attribute and cell topology information can improve the cell clustering.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de Expresión Génica de una Sola Célula , Análisis por Conglomerados , Análisis de la Célula Individual , Análisis de Secuencia de ARN
4.
Gut Pathog ; 15(1): 45, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752551

RESUMEN

BACKGROUND: Patients with liver cirrhosis (LC) are prone to gastric mucosa damage. We investigated the alterations of gastric mucosa in LC patients and their possible mechanisms through multi-omics. RESULTS: We observed significant gastric mucosa microbial dysbiosis in LC subjects. Gastric mucosal microbiomes of LC patients contained a higher relative abundance of Streptococcus, Neisseria, Prevotella, Veillonella, and Porphyromonas, as well as a decreased abundance in Helicobacter and Achromobacter, than control subjects. The LC patients had higher levels of bile acids (BAs) and long-chain acylcarnitines (long-chain ACs) in serum. The gastric mucosal microbiomes were associated with serum levels of BAs and long-chain ACs. Transcriptome analyses of gastric mucosa revealed an upregulation of endothelial cell specific molecule 1, serpin family E member 1, mucin 2, caudal type homeobox 2, retinol binding protein 2, and defensin alpha 5 in LC group. Besides, the bile secretion signaling pathway was significantly upregulated in the LC group. CONCLUSIONS: The alterations in the gastric mucosal microbiome and transcriptome of LC patients were identified. The impaired energy metabolism in gastric mucosal cells and bile acids might aggravate the inflammation of gastric mucosa and even exacerbate the Correa's cascade process. The gastric mucosal cells might reduce bile acid toxicity by bile acid efflux and detoxification. TRIAL REGISTRATION: ChiCTR2100051070.

5.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36929930

RESUMEN

MOTIVATION: The integration of single-cell multi-omics data can uncover the underlying regulatory basis of diverse cell types and states. However, contemporary methods disregard the omics individuality, and the high noise, sparsity, and heterogeneity of single-cell data also impact the fusion effect. Furthermore, available single-cell clustering methods only focus on the cell type clustering, which cannot mine the alternative clustering to comprehensively analyze cells. RESULTS: We propose a single-cell data fusion based multiple clustering (scMCs) approach that can jointly model single-cell transcriptomics and epigenetic data, and explore multiple different clusterings. scMCs first mines the omics-specific and cross-omics consistent representations, then fuses them into a co-embedding representation, which can dissect cellular heterogeneity and impute data. To discover the potential alternative clustering embedded in multi-omics, scMCs projects the co-embedding representation into different salient subspaces. Meanwhile, it reduces the redundancy between subspaces to enhance the diversity of alternative clusterings and optimizes the cluster centers in each subspace to boost the quality of corresponding clustering. Unlike single clustering, these alternative clusterings provide additional perspectives for understanding complex genetic information, such as cell types and states. Experimental results show that scMCs can effectively identify subcellular types, impute dropout events, and uncover diverse cell characteristics by giving different but meaningful clusterings. AVAILABILITY AND IMPLEMENTATION: The code is available at www.sdu-idea.cn/codes.php?name=scMCs.


Asunto(s)
Algoritmos , Multiómica , Epigenómica , Perfilación de la Expresión Génica , Análisis por Conglomerados
6.
Brief Bioinform ; 24(3)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37000166

RESUMEN

Cooperative driver pathways discovery helps researchers to study the pathogenesis of cancer. However, most discovery methods mainly focus on genomics data, and neglect the known pathway information and other related multi-omics data; thus they cannot faithfully decipher the carcinogenic process. We propose CDPMiner (Cooperative Driver Pathways Miner) to discover cooperative driver pathways by multiplex network embedding, which can jointly model relational and attribute information of multi-type molecules. CDPMiner first uses the pathway topology to quantify the weight of genes in different pathways, and optimizes the relations between genes and pathways. Then it constructs an attributed multiplex network consisting of micro RNAs, long noncoding RNAs, genes and pathways, embeds the network through deep joint matrix factorization to mine more essential information for pathway-level analysis and reconstructs the pathway interaction network. Finally, CDPMiner leverages the reconstructed network and mutation data to define the driver weight between pathways to discover cooperative driver pathways. Experimental results on Breast invasive carcinoma and Stomach adenocarcinoma datasets show that CDPMiner can effectively fuse multi-omics data to discover more driver pathways, which indeed cooperatively trigger cancers and are valuable for carcinogenesis analysis. Ablation study justifies CDPMiner for a more comprehensive analysis of cancer by fusing multi-omics data.


Asunto(s)
Algoritmos , Neoplasias de la Mama , Humanos , Femenino , Genómica/métodos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Mutación , Carcinogénesis/genética
7.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36733262

RESUMEN

Single-cell RNA sequencing (scRNA-seq) data are typically with a large number of missing values, which often results in the loss of critical gene signaling information and seriously limit the downstream analysis. Deep learning-based imputation methods often can better handle scRNA-seq data than shallow ones, but most of them do not consider the inherent relations between genes, and the expression of a gene is often regulated by other genes. Therefore, it is essential to impute scRNA-seq data by considering the regional gene-to-gene relations. We propose a novel model (named scGGAN) to impute scRNA-seq data that learns the gene-to-gene relations by Graph Convolutional Networks (GCN) and global scRNA-seq data distribution by Generative Adversarial Networks (GAN). scGGAN first leverages single-cell and bulk genomics data to explore inherent relations between genes and builds a more compact gene relation network to jointly capture the homogeneous and heterogeneous information. Then, it constructs a GCN-based GAN model to integrate the scRNA-seq, gene sequencing data and gene relation network for generating scRNA-seq data, and trains the model through adversarial learning. Finally, it utilizes data generated by the trained GCN-based GAN model to impute scRNA-seq data. Experiments on simulated and real scRNA-seq datasets show that scGGAN can effectively identify dropout events, recover the biologically meaningful expressions, determine subcellular states and types, improve the differential expression analysis and temporal dynamics analysis. Ablation experiments confirm that both the gene relation network and gene sequence data help the imputation of scRNA-seq data.


Asunto(s)
Análisis de Expresión Génica de una Sola Célula , Programas Informáticos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Genómica , Perfilación de la Expresión Génica
8.
Artículo en Inglés | MEDLINE | ID: mdl-34855599

RESUMEN

Accurate diagnosis of cancer subtypes is crucial for precise treatment, because different cancer subtypes are involved with different pathology and require different therapies. Although deep learning techniques have made great success in computer vision and other fields, they do not work well on Lung cancer subtype diagnosis, due to the distinction of slide images between different cancer subtypes is ambiguous. Furthermore, they often over-fit to high-dimensional genomics data with limited samples, and do not fuse the image and genomics data in a sensible way. In this paper, we propose a hybrid deep network based approach LungDIG for Lung cancer subtype Diagnosis by fusing Image-Genomics data. LungDIG first tiles the tissue slide image into small patches and extracts the patch-level features by fine-tuning an Inception-V3 model. Since the patches may contain some false positives in non-diagnostic regions, it further designs a patch-level feature combination strategy to integrate the extracted patch features and maintain the diversity between different cancer subtypes. At the same time, it extracts the genomics features from Copy Number Variation data by an attention based nonlinear extractor. Next, it fuses the image and genomics features by an attention based multilayer perceptron (MLP) to diagnose cancer subtype. Experiments on TCGA lung cancer data show that LungDIG can not only achieve higher accuracy for cancer subtype diagnosis than state-of-the-art methods, but also have a high authenticity and good interpretability.

9.
Bioinformatics ; 38(22): 5092-5099, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36130063

RESUMEN

MOTIVATION: Cancer subtype diagnosis is crucial for its precise treatment and different subtypes need different therapies. Although the diagnosis can be greatly improved by fusing multiomics data, most fusion solutions depend on paired omics data, which are actually weakly paired, with different omics views missing for different samples. Incomplete multiview learning-based solutions can alleviate this issue but are still far from satisfactory because they: (i) mainly focus on shared information while ignore the important individuality of multiomics data and (ii) cannot pick out interpretable features for precise diagnosis. RESULTS: We introduce an interpretable and flexible solution (LungDWM) for Lung cancer subtype Diagnosis using Weakly paired Multiomics data. LungDWM first builds an attention-based encoder for each omics to pick out important diagnostic features and extract shared and complementary information across omics. Next, it proposes an individual loss to jointly extract the specific information of each omics and performs generative adversarial learning to impute missing omics of samples using extracted features. After that, it fuses the extracted and imputed features to diagnose cancer subtypes. Experiments on benchmark datasets show that LungDWM achieves a better performance than recent competitive methods, and has a high authenticity and good interpretability. AVAILABILITY AND IMPLEMENTATION: The code is available at http://www.sdu-idea.cn/codes.php?name=LungDWM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico
10.
Bioinformatics ; 38(19): 4581-4588, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35997558

RESUMEN

MOTIVATION: High-resolution annotation of gene functions is a central task in functional genomics. Multiple proteoforms translated from alternatively spliced isoforms from a single gene are actual function performers and greatly increase the functional diversity. The specific functions of different isoforms can decipher the molecular basis of various complex diseases at a finer granularity. Multi-instance learning (MIL)-based solutions have been developed to distribute gene(bag)-level Gene Ontology (GO) annotations to isoforms(instances), but they simply presume that a particular annotation of the gene is responsible by only one isoform, neglect the hierarchical structures and semantics of massive GO terms (labels), or can only handle dozens of terms. RESULTS: We propose an efficacy approach IsofunGO to differentiate massive functions of isoforms by GO embedding. Particularly, IsofunGO first introduces an attributed hierarchical network to model massive GO terms, and a GO network embedding strategy to learn compact representations of GO terms and project GO annotations of genes into compressed ones, this strategy not only explores and preserves hierarchy between GO terms but also greatly reduces the prediction load. Next, it develops an attention-based MIL network to fuse genomics and transcriptomics data of isoforms and predict isoform functions by referring to compressed annotations. Extensive experiments on benchmark datasets demonstrate the efficacy of IsofunGO. Both the GO embedding and attention mechanism can boost the performance and interpretability. AVAILABILITYAND IMPLEMENTATION: The code of IsofunGO is available at http://www.sdu-idea.cn/codes.php?name=IsofunGO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional , Semántica , Ontología de Genes , Anotación de Secuencia Molecular , Isoformas de Proteínas/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-35862332

RESUMEN

Personalized federated learning (PFL) learns a personalized model for each client in a decentralized manner, where each client owns private data that are not shared and data among clients are non-independent and identically distributed (i.i.d.) However, existing PFL solutions assume that clients have sufficient training samples to jointly induce personalized models. Thus, existing PFL solutions cannot perform well in a few-shot scenario, where most or all clients only have a handful of samples for training. Furthermore, existing few-shot learning (FSL) approaches typically need centralized training data; as such, these FSL methods are not applicable in decentralized scenarios. How to enable PFL with limited training samples per client is a practical but understudied problem. In this article, we propose a solution called personalized federated few-shot learning (pFedFSL) to tackle this problem. Specifically, pFedFSL learns a personalized and discriminative feature space for each client by identifying which models perform well on which clients, without exposing local data of clients to the server and other clients, and which clients should be selected for collaboration with the target client. In the learned feature spaces, each sample is made closer to samples of the same category and farther away from samples of different categories. Experimental results on four benchmark datasets demonstrate that pFedFSL outperforms competitive baselines across different settings.

12.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35696639

RESUMEN

With the development of high-throughput genotyping technology, single nucleotide polymorphism (SNP)-SNP interactions (SSIs) detection has become an essential way for understanding disease susceptibility. Various methods have been proposed to detect SSIs. However, given the disease complexity and bias of individual SSI detectors, these single-detector-based methods are generally unscalable for real genome-wide data and with unfavorable results. We propose a novel ensemble learning-based approach (ELSSI) that can significantly reduce the bias of individual detectors and their computational load. ELSSI randomly divides SNPs into different subsets and evaluates them by multi-type detectors in parallel. Particularly, ELSSI introduces a four-stage pipeline (generate, score, switch and filter) to iteratively generate new SNP combination subsets from SNP subsets, score the combination subset by individual detectors, switch high-score combinations to other detectors for re-scoring, then filter out combinations with low scores. This pipeline makes ELSSI able to detect high-order SSIs from large genome-wide datasets. Experimental results on various simulated and real genome-wide datasets show the superior efficacy of ELSSI to state-of-the-art methods in detecting SSIs, especially for high-order ones. ELSSI is applicable with moderate PCs on the Internet and flexible to assemble new detectors. The code of ELSSI is available at https://www.sdu-idea.cn/codes.php?name=ELSSI.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Genoma , Estudio de Asociación del Genoma Completo/métodos
13.
Methods ; 205: 18-28, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35690250

RESUMEN

Genome-phenome association (GPA) prediction can promote the understanding of biological mechanisms about complex pathology of phenotypes (i.e., traits and diseases). Traditional heterogeneous network-based GPA approaches overwhelmingly need to project heterogeneous data toward homogeneous network for data fusion and prediction, such projections result in the loss of heterogeneous network structure information. Matrix factorization based data fusion can avoid such projection by integrating multi-type data in a coherent way, but they typically perform linear factorization and cannot mine the nonlinear relationships between molecules, which compromise the accuracy of GPA analysis. Furthermore, most of them can not selectively synergy network topology and node attribution information in a principle way. In this paper, we propose a weighted deep matrix factorization based solution (WDGPA) to predict GPAs by selectively and differentially fusing heterogeneous molecular network and diverse attributes of nodes. WDGPA firstly assigns weights to inter/intra-relational data matrices and attribute data matrices, and performs deep matrix factorization on these matrices of heterogeneous network in a cooperative manner to obtain the nonlinear representations of different nodes. In addition, it performs low-rank representation learning on the attribute data with the shared nonlinear representations. In this way, both the network topology and node attributes are jointly mined to explore the representations of molecules and complex interplays between molecules and phenotypes. WDGPA then uses the representational vectors of gene and phenotype nodes to predict GPAs. Experimental results on maize and human datasets confirm that WDGPA outperforms competitive methods by a large margin under different evaluation protocols.


Asunto(s)
Algoritmos , Genoma , Humanos , Fenotipo
14.
IEEE Trans Neural Netw Learn Syst ; 33(1): 304-314, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33052870

RESUMEN

Hashing has been widely adopted for large-scale data retrieval in many domains due to its low storage cost and high retrieval speed. Existing cross-modal hashing methods optimistically assume that the correspondence between training samples across modalities is readily available. This assumption is unrealistic in practical applications. In addition, existing methods generally require the same number of samples across different modalities, which restricts their flexibility. We propose a flexible cross-modal hashing approach (FlexCMH) to learn effective hashing codes from weakly paired data, whose correspondence across modalities is partially (or even totally) unknown. FlexCMH first introduces a clustering-based matching strategy to explore the structure of each cluster and, thus, to find the potential correspondence between clusters (and samples therein) across modalities. To reduce the impact of an incomplete correspondence, it jointly optimizes the potential correspondence, the cross-modal hashing functions derived from the correspondence, and a hashing quantitative loss in a unified objective function. An alternative optimization technique is also proposed to coordinate the correspondence and hash functions and reinforce the reciprocal effects of the two objectives. Experiments on public multimodal data sets show that FlexCMH achieves significantly better results than state-of-the-art methods, and it, indeed, offers a high degree of flexibility for practical cross-modal hashing tasks.

15.
IEEE/ACM Trans Comput Biol Bioinform ; 19(4): 2166-2176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33571094

RESUMEN

Alternative splicing produces different isoforms from the same gene locus, it is an important mechanism for regulating gene expression and proteome diversity. Although the prediction of gene(ncRNA)-disease associations has been extensively studied, few (or no) computational solutions have been proposed for the prediction of isoform-disease association (IDA) at a large scale, mainly due to the lack of disease annotations of isoforms. However, increasing evidences confirm the associations between diseases and isoforms, which can more precisely uncover the pathology of complex diseases. Therefore, it is highly desirable to predict IDAs. To bridge this gap, we propose a deep neural network based solution (DeepIDA) to fuse multi-type genomics and transcriptomics data to predict IDAs. Particularly, DeepIDA uses gene-isoform relations to dispatch gene-disease associations to isoforms. In addition, it utilizes two DNN sub-networks with different structures to capture nucleotide and expression features of isoforms, Gene Ontology data and miRNA target data, respectively. After that, these two sub-networks are merged in a dense layer to predict IDAs. The experimental results on public datasets show that DeepIDA can effectively predict IDAs with AUPRC (area under the precision-recall curve) of 0.9141, macro F-measure of 0.9155, G-mean of 0.9278 and balanced accuracy of 0.9303 across 732 diseases, which are much higher than those of competitive methods. Further study on sixteen isoform-disease association cases again corroborates the superiority of DeepIDA. The code of DeepIDA is available at http://mlda.swu.edu.cn/codes.php?name=DeepIDA.


Asunto(s)
Empalme Alternativo , Redes Neurales de la Computación , Empalme Alternativo/genética , Biología Computacional/métodos , Ontología de Genes , Isoformas de Proteínas/genética , Proteoma/metabolismo
16.
IEEE Trans Neural Netw Learn Syst ; 33(9): 4311-4321, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33577462

RESUMEN

Multiview multi-instance multilabel learning (M3L) is a framework for modeling complex objects. In this framework, each object (or bag) contains one or more instances, is represented with different feature views, and simultaneously annotated with a set of nonexclusive semantic labels. Given the multiplicity of the studied objects, traditional M3L methods generally demand a large number of labeled bags to train a predictive model to annotate bags (or instances) with semantic labels. However, annotating sufficient bags is very expensive and often impractical. In this article, we present an active learning-based M3L approach (M3AL) to reduce the labeling costs of bags and to improve the performance as much as possible. M3AL first adapts the multiview self-representation learning to evacuate the shared and individual information of bags and to learn the shared/individual similarities between bags across/within views. Next, to avoid scrutinizing all the possible labels, M3AL introduces a new query strategy that leverages the shared and individual information, and the diverse instance distribution of bags across views, to select the most informative bag-label pair for the query. Experimental studies on benchmark data sets show that M3AL can significantly reduce the query costs while achieving a better performance than other related competitive methods at the same cost.

17.
Artículo en Inglés | MEDLINE | ID: mdl-33989157

RESUMEN

Detecting single nucleotide polymorphisms (SNPs) interactions is crucial to identify susceptibility genes associated with complex human diseases in genome-wide association studies. Clustering-based approaches are widely used in reducing search space and exploring potential relationships between SNPs in epistasis analysis. However, these approaches all only use a single measure to filter out nonsignificant SNP combinations, which may be significant ones from another perspective. In this paper, we propose a two-stage approach named EpiMC (Epistatic Interactions detection based on Multiple Clusterings) that employs multiple clusterings to obtain more precise candidate sets and more comprehensively detect high-order interactions based on these sets. In the first stage, EpiMC proposes a matrix factorization based multiple clusterings algorithm to generate multiple diverse clusterings, each of which divide all SNPs into different clusters. This stage aims to reduce the chance of filtering out potential candidates overlooked by a single clustering and groups associated SNPs together from different clustering perspectives. In the next stage, EpiMC considers both the single-locus effects and interaction effects to select high-quality disease associated SNPs, and then uses Jaccard similarity to get candidate sets. Finally, EpiMC uses exhaustive search on the obtained small candidate sets to precisely detect epsitatic interactions. Extensive simulation experiments show that EpiMC has a better performance in detecting high-order interactions than state-of-the-art solutions. On the Wellcome Trust Case Control Consortium (WTCCC) dataset, EpiMC detects several significant epistatic interactions associated with breast cancer (BC) and age-related macular degeneration (AMD), which again corroborate the effectiveness of EpiMC.


Asunto(s)
Epistasis Genética , Estudio de Asociación del Genoma Completo , Algoritmos , Análisis por Conglomerados , Epistasis Genética/genética , Humanos , Polimorfismo de Nucleótido Simple/genética
18.
IEEE/ACM Trans Comput Biol Bioinform ; 19(4): 2177-2187, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33764878

RESUMEN

Alternative splicing enables a gene translating into different isoforms and into the corresponding proteoforms, which actually accomplish various biological functions of a living body. Isoform-isoform interactions (IIIs) provide a higher resolution interactome to explore the cellular processes and disease mechanisms than the canonically studied protein-protein interactions (PPIs), which are often recorded at the coarse gene level. The knowledge of IIIs is critical to map pathways, understand protein complexity and functional diversity, but the known IIIs are very scanty. In this paper, we propose a deep learning based method called DeepIII to systematically predict genome-wide IIIs by integrating diverse data sources, including RNA-seq datasets of different human tissues, exon array data, domain-domain interactions (DDIs) of proteins, nucleotide sequences and amino acid sequences. Particularly, DeepIII fuses these data to learn the representation of isoform pairs with a four-layer deep neural networks, and then performs binary classification on the learnt representation to achieve the prediction of IIIs. Experimental results show that DeepIII achieves a superior prediction performance to the state-of-the-art solutions and the III network constructed by DeepIII gives more accurate isoform function prediction. Case studies further confirm that DeepIII can differentiate the individual interaction partners of different isoforms spliced from the same gene. The code and datasets of DeepIII are available at http://mlda.swu.edu.cn/codes.php?name=DeepIII.


Asunto(s)
Empalme Alternativo , Redes Neurales de la Computación , Empalme Alternativo/genética , Humanos , Isoformas de Proteínas/genética
19.
Methods ; 198: 65-75, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34555529

RESUMEN

Epistasis between single nucleotide polymorphisms (SNPs) plays an important role in elucidating the missing heritability of complex diseases. Diverse approaches have been invented for detecting SNP interactions, but they canonically neglect the important and useful connections between SNPs and other bio-molecules (i.e., miRNAs and lncRNAs). To comprehensively model these disease related molecules, a heterogeneous bio-molecular network based solution EpiHNet is introduced for high-order SNP interactions detection. EpiHNet firstly uses case/control data to construct an SNP statistical network, and meta-path based similarity on the heterogeneous network composed with SNPs, genes, lncRNAs, miRNAs and diseases to define another SNP relational network. The SNP relational network can explore and exploit different associations between molecules and diseases to complement the SNP statistical network and search the significantly associated SNPs. Next, EpiHNet integrates these two networks into a composite network, applies the modularity based clustering with fast search strategy to divide SNP nodes into different clusters. After that, it detects SNP interactions based on SNP combinations derived from each cluster. Synthetic experiments on diverse two-locus and three-locus disease models manifest that EpiHNet outperforms competitive baselines, even without the heterogeneous network. For real WTCCC breast cancer data, EpiHNet also demonstrates expressive results on detecting high-order SNP interactions.


Asunto(s)
Epistasis Genética , Estudio de Asociación del Genoma Completo , Algoritmos , Estudios de Casos y Controles , Análisis por Conglomerados , Estudio de Asociación del Genoma Completo/métodos , Humanos , Polimorfismo de Nucleótido Simple
20.
IEEE/ACM Trans Comput Biol Bioinform ; 19(5): 3048-3059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34185647

RESUMEN

Alternative splicing enables a gene spliced into different isoforms and hence protein variants. Identifying individual functions of these isoforms help deciphering the functional diversity of proteins. Although much efforts have been made for automatic gene function prediction, few efforts have been moved toward computational isoform function prediction, mainly due to the unavailable (or scanty) functional annotations of isoforms. Existing efforts directly combine multiple RNA-seq datasets without account of the important tissue specificity of alternative splicing. To bridge this gap, we introduce a novel approach called TS-Isofun to predict the functions of isoforms by integrating multiple functional association networks with respect to tissue specificity. TS-Isofun first constructs tissue-specific isoform functional association networks using multiple RNA-seq datasets from tissue-wise. Next, TS-Isofun assigns weights to these networks and models the tissue specificity by selectively integrating them with adaptive weights. It then introduces a joint matrix factorization-based data fusion model to leverage the integrated network, gene-level data and functional annotations of genes to infer the functions of isoforms. To achieve coherent weight assignment and isoform function prediction, TS-Isofun jointly optimizes the weights of individual networks and the isoform function prediction in a unified objective function. Experimental results show that TS-Isofun significantly outperforms state-of-the-art methods and the account of tissue specificity contributes to more accurate isoform function prediction.


Asunto(s)
Empalme Alternativo , Empalme Alternativo/genética , Especificidad de Órganos/genética , Isoformas de Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA