Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 473
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Water Res ; 266: 122316, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39222603

RESUMEN

Submerged macrophytes remediation is a commonly used technique for improving water quality and restoring habitat in aquatic ecosystems. However, the drivers of success in the submerged macrophytes assembly process and their specific impacts on methane emissions are poorly understood. Thus, we conducted a mesocosm experiment to test the growth plasticity and carbon fixation of widespread submerged macrophytes (Vallisneria natans) under different nutrient conditions. A refined dynamic chamber method was utilized to concurrently collect and quantify methane emission fluxes arising from ebullition and diffusion processes. Significant correlations were found between methane flux and variations in the physiological activities of V. nantas by the fluorescence imaging system. Our results show that exceeding tolerance thresholds of ammonia in the water significantly interfered with the photosynthetic systems in submerged leaves and the radial oxygen loss in adventitious roots. The recovery process of V. natans accelerated the consumption of dissolved oxygen, leading to increase in the populations of methanogen (153.3 % increase of mcrA genes) and subsequently elevating CH4 emission fluxes (23.7 %) under high nutrient concentrations. Conversely, V. natans increased the available organic carbon under low nutrient conditions by radial oxygen loss, further increasing CH4 emission fluxes (94.7 %). Quantitative genetic and modeling analyses revealed that plant restoration processes drive ecological niche differentiation of methanogenic and methane oxidation microorganisms, affecting methane release fluxes within the restored area. The speciation process of V. natans is incapable of simultaneously meeting improved water purification and reduced methane emissions goals.

2.
bioRxiv ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39257786

RESUMEN

Alzheimer's Disease and Alzheimer's Disease-related dementias (AD/ADRD) pose major global healthcare challenges, with diabetes mellitus (DM) being a key risk factor. Both AD and DM-related ADRD are characterized by reduced cerebral blood flow, although the exact mechanisms remain unclear. We previously identified compromised cerebral hemodynamics as early signs in TgF344-AD and type 2 DM-ADRD (T2DN) rat models. Genome-wide studies have linked AD/ADRD to SNPs in soluble epoxide hydrolase (sEH). This study explored the effects of sEH inhibition with TPPU on cerebral vascular function and cognition in AD and DM-ADRD models. Chronic TPPU treatment improved cognition in both AD and DM-ADRD rats without affecting body weight. In DM-ADRD rats, TPPU reduced plasma glucose and HbA1C levels. Transcriptomic analysis of primary cerebral vascular smooth muscle cells from AD rats treated with TPPU revealed enhanced pathways related to cell contraction, alongside decreased oxidative stress and inflammation. Both AD and DM-ADRD rats exhibited impaired myogenic responses and autoregulation in the cerebral circulation, which were normalized with chronic sEH inhibition. Additionally, TPPU improved acetylcholine-induced vasodilation in the middle cerebral arteries (MCA) of DM-ADRD rats. Acute TPPU administration unexpectedly caused vasoconstriction in the MCA of DM-ADRD rats at lower doses. In contrast, higher doses or longer durations were required to induce effective vasodilation at physiological perfusion pressure in both control and ADRD rats. Additionally, TPPU decreased reactive oxygen species production in cerebral vessels of AD and DM-ADRD rats. These findings provide novel evidence that chronic sEH inhibition can reverse cerebrovascular dysfunction and cognitive impairments in AD/ADRD, offering a promising avenue for therapeutic development.

3.
J Am Chem Soc ; 146(38): 26081-26094, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39283331

RESUMEN

The heteroanionic materials (HAMs) have attracted more and more attention because they can better balance the functional properties of materials. However, their rational structural design is still a great challenge. Here, by using the antiperovskite Ba3S[GeS4] as a template and calculating the tolerance factor (t) as a reference, eight heteroanionic oxychalcogenides with balanced properties were finally synthesized by a partially group-substitution method. Among them, Ba3[CO3][MQ4] (M = Ge, Sn; Q = S, Se) are centrosymmetric (CS) crystals and realize optimization of band gaps and birefringence. For Ae3[TO3][SnOQ3] (Ae = Sr, Ba; T = Si, Ge; Q = S, Se), thanks to the novel [TO4SnQ3] polyanionic groups for the regulation to the antiperovskite structures and the contributions to the nonlinear optical (NLO) properties, they achieve the structural transition from CS to noncentrosymmetry and accomplish an excellent balance among the critical performance parameters as the potential candidates for the infrared NLO materials, including phase-matchable behavior, wide band gaps (Eg = 3.26-3.95 eV), high laser damage threshold (LDT = 3.2-4.4 × AgGaS2), suitable birefringence (Δn = 0.065-0.098@2090 nm) and sufficiently strong second-harmonic generation responses (about 0.6-0.9 × AgGaS2). Moreover, benefiting from crystallization in the polar space groups, they exhibit ferroelectricity and piezoelectricity at room temperature. As far as we know, this is the first reported fully inorganic antiperovskite ferroelectric. These demonstrate that our strategy is desirable and can provide some unique insights into the development of HAMs or antiperovskite materials with specific functions or structures.

4.
J Agric Food Chem ; 72(38): 20752-20762, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39285668

RESUMEN

Vitamin A (retinoids) is crucial for human health, with significant demand across the food, pharmaceutical, and animal feed industries. Currently, the market primarily relies on chemical synthesis and natural extraction methods, which face challenges such as low synthesis efficiency and complex extraction processes. Advances in synthetic biology have enabled vitamin A biosynthesis using microbial cell factories, offering a promising and sustainable solution to meet the increasing market demands. This review introduces the key enzymes involved in the biosynthesis of vitamin A from ß-carotene, evaluates achievements in vitamin A production using various microbial hosts, and summarizes strategies for optimizing vitamin A biosynthesis. Additionally, we outline the remaining challenges and propose future directions for the biotechnological production of vitamin A.


Asunto(s)
Bacterias , Vitamina A , beta Caroteno , beta Caroteno/metabolismo , Vitamina A/metabolismo , Bacterias/metabolismo , Bacterias/genética , Retinoides/metabolismo , Retinoides/química , Ingeniería Metabólica , Humanos , Hongos/metabolismo , Hongos/genética , Microbiología Industrial
5.
Inorg Chem ; 63(38): 17362-17366, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39264114

RESUMEN

Nonlinear-optical (NLO) crystals capable of controlling and manipulating light to generate coherent radiation at challenging wavelengths are of significant interest. However, designing a new UV NLO crystal remains difficult due to the rigid requirements for structure and properties. Herein, we have successfully designed and synthesized a novel noncentrosymmetric (NCS) rare-earth borate UV NLO crystal, K3Y3(BO3)4, through the heterovalence substitution of YAl3(BO3)4. K3Y3(BO3)4 (KYBO) crystallizes in the NCS and polar space group of P63mc, with the structure formed by the interconnectioned BO3 triangles and YO8 polyhedra through corner-sharing and edge-sharing. The property measurements indicate that KYBO is second-harmonic-generation-active with a moderate response, ∼2 × KDP. Meanwhile, KYBO can exhibit a short UV cutoff edge (λcutoff < 190 nm), indicating its potential as a new UV or deep-UV NLO crystal.

6.
Acta Biomater ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39322041

RESUMEN

Developing multifunctional nanoplatforms to comprehensively modulate the tumor microenvironment and enhance diagnostic and therapeutic outcomes still remains a great challenge. Here, we report the facile construction of a multivariate nanoplatform based on cancer cell membrane (CM)-encapsulated redox-responsive poly(N-vinylcaprolactam) (PVCL) nanogels (NGs) co-loaded with Cu(II) and chemotherapeutic drug toyocamycin (Toy) for magnetic resonance (MR) imaging-guided combination tumor chemodynamic therapy/chemoimmunotherapy. We show that redox-responsive PVCL NGs formed through precipitation polymerization can be aminated, conjugated with 3,4-dihydroxyhydrocinnamic acid for Cu(II) complexation, physically loaded with Toy, and finally camouflaged with CMs. The created ADCT@CM NGs with an average size of 113.0 nm are stable under physiological conditions and can efficiently release Cu(II) and Toy under tumor microenvironment with a high level of glutathione. Meanwhile, the developed NGs are able to enhance cancer cell oxidative stress and endoplasmic reticulum stress by synergizing the effects of chemodynamic therapy mediated by Cu-based Fenton-like reaction and Toy-mediated chemotherapy, thereby triggering significant immunogenic cell death (ICD). In a melanoma mouse model, the NGs show potent immune activation effects to reinforce tumor therapeutic efficacy through ICD induction and immune modulation including high levels of immune cytokine secretion, increased tumor infiltration of CD8+ cytotoxic T cells, and reduced tumor infiltration of regulatory T cells. With the CM coating and Cu(II) loading, the developed NG platform demonstrates homologous tumor targeting and T1-weighted MR imaging, hence providing a general biomimetic NG platform for ICD-facilitated tumor theranostic nanoplatform. STATEMENT OF SIGNIFICANCE: Developing multifunctional nanoplatforms to comprehensively modulate the tumor microenvironment (TME) and enhance theranostic outcomes remains a challenge. Here, a cancer cell membrane (CM)-camouflaged nanoplatform based on aminated poly(N-vinylcaprolactam) nanogels (NGs) co-loaded with Cu(II) and toyocamycin (Toy) was prepared for magnetic resonance (MR) imaging-guided combination tumor chemodynamic therapy/chemoimmunotherapy. The tumor targeting specificity and efficient TME-triggered release of Cu(II) and Toy could enhance tumor cell oxidative stress and endoplasmic reticulum stress by synergizing the effects of chemodynamic therapy mediated by Cu-based Fenton-like reaction and Toy-mediated chemotherapy, respectively, thereby leading to significant immunogenic cell death (ICD) and immune response. With the CM coating and Cu(II) loading, the developed NG platform also demonstrates good T1-weighted tumor MR imaging performance. Hence, this study provides a general biomimetic NG platform for ICD-facilitated tumor theranostics.

7.
Inorg Chem ; 63(35): 16507-16514, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39165176

RESUMEN

Rational chemical substitution is an effective way to regulate structure and enrich property. Herein, a new noncentrosymmetric borosilicate, Ba2ScBSi2O9, was successfully synthesized by substituting CaO6 units in Ba2CaB2Si4O14 with ScO6 octahedra, with comparatively strong covalency. This substitution not only effectively prevents polymerization of the B-O groups, resulting in an intriguing structural transformation from tetrahedral-coordinated borosilicate of Ba2CaB2Si4O14 to mixed-coordinated borosilicate Ba2ScBSi2O9, but also enhances its second harmonic generation response (2 × KDP), that is nearly four times higher than its parent structure while keeping a short ultraviolet (UV) cutoff edge (λcutoff < 190 nm). In addition, the polar space group of Pca21 for Ba2ScBSi2O9 achieves its ferroelectric polarization reversal capability, which makes quasi-phase-matching technology possible to counteract the nonphase-matching caused by small birefringence of silicates. This work indicates the unique role of heterovalent substitution in regulating structure and performance, providing new insights for exploring borosilicate with versatile functionality.

8.
Molecules ; 29(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39203055

RESUMEN

CO2-enhanced oil recovery (CO2-EOR) is a crucial method for CO2 utilization and sequestration, representing an important zero-carbon or even negative-carbon emission reduction technology. However, the low viscosity of CO2 and reservoir heterogeneity often result in early gas breakthrough, significantly reducing CO2 utilization and sequestration efficiency. A water-alternating-gas (WAG) injection is a technique for mitigating gas breakthrough and viscous fingering in CO2-EOR. However, it encounters challenges related to insufficient mobility control in highly heterogeneous and fractured reservoirs, resulting in gas channeling and low sweep efficiency. Despite the extensive application and research of a WAG injection in oil and gas reservoirs, the most recent comprehensive review dates back to 2018, which focuses on the mechanisms of EOR using conventional WAG. Herein, we give an updated and comprehensive review to incorporate the latest advancements in CO2-WAG flooding techniques for enhanced sweep efficiency, which includes the theory, applications, fluid displacement mechanisms, and control strategies of a CO2-WAG injection. It addresses common challenges, operational issues, and remedial measures in WAG projects by covering studies from experiments, simulations, and pore-scale modeling. This review aims to provide guidance and serve as a reference for the application and research advancement of CO2-EOR techniques in heterogeneous and fractured reservoirs.

9.
ACS Omega ; 9(32): 34493-34506, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39157104

RESUMEN

Nonsmall cell lung cancer (NSCLC), due to its lack of early symptoms, has become one of the leading causes of cancer-related deaths globally. Exosomes, small membrane vesicles secreted by cells, are widely present in human bodily fluids. In the bodily fluids of NSCLC patients, the quantity of extracellular vesicles is double that of healthy individuals, suggesting their potential as biomarkers for screening NSCLC. This study designed a dual-modal aptasensor that integrated excellent sensitivity in electrochemical detection and portability in fluorescence detection into one device. AuNPs were functionalized with exosome-capturing probes containing thiol-modified CD63 aptamers, which were immobilized on screen-printed gold electrodes. On the other hand, the carboxylated CD63 aptamer was immobilized on the surface of PB-modified g-C3N4 loaded with Co-SANs particles (Co@g-C3N4@PB). By combining these components, a sandwich structure (AuNPs/Apt1/Exo/Apt2- Co@g-C3N4@PB) was constructed, forming a probe for specific exosome recognition. First, the samples were preliminarily assessed for their positive or negative status under a fluorescence inverted microscope. Subsequently, a more in-depth quantitative analysis was conducted on suspected positive samples using electrochemical or fluorescence analysis methods. The detection limits for electrochemical analysis and fluorescence analysis were 66.68 and 33.5particles/mL, respectively. In the analysis of clinical serum exosome samples, the developed dual-modal aptasensor effectively distinguished serum specimens from those of NSCLC patients and healthy volunteers. This highlighted the inspection capability of the dual-modal adapter sensor, especially in point-of-care testing, making it a highly suitable tool for clinical applications.

10.
Heliyon ; 10(13): e33760, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39071633

RESUMEN

Objectives: To develop a multi-omics prognostic model integrating transcriptomics and radiomics for predicting overall survival in patients with glioblastoma multiforme (GBM), and investigate the biological pathways of radiomics patterns. Materials and methods: Transcription profiles of GBM patients and normal controls were used to obtain differentially expressed mRNAs and long non-coding RNAs (lncRNAs). Radiomics features were extracted from magnetic resonance imaging (MRI). Least absolute shrinkage and selection operator (LASSO) Cox regression was employed to select survival-associated features for the construction of transcriptomics and radiomics signatures. Genes associated with GBM prognosis were identified through the analysis of lncRNA-mRNA co-expression networks and Weighted Gene Co-expression Network Analysis (WGCNA), and their biological pathways were investigated using Genomes enrichment analysis. Transcriptomics, radiomics, and clinical data were integrated to evaluate the multi-omics prognostic model's performance. Results: LASSO Cox regression yielded 21 survival-related features, including 19 transcriptomics features and 2 radiomics features. Based on transcriptomics and radiomics signature, GBM patients were classified as high-risk or low-risk. The genes obtained from the co-expression network screen were associated with microtubule binding, while those from the WGCNA screen were associated with growth factor receptor binding. In the training set, the AUC values for the multi-omics model and clinical model were 0.964 and 0.830, respectively, while in the validation set, they were 0.907 and 0.787. The multi-omics prognostic model outperformed the clinical prognostic model. Conclusions: The co-expression network and WGCNA methods revealed genes associated with multiple biological pathways in GBM. The multi-omics prognostic model demonstrated excellent performance and indicated significant potential for clinical application.

11.
Aquat Toxicol ; 273: 107029, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39047440

RESUMEN

Microplastic pollution and biological invasion, as two by-products of human civilization, interfere the ecological function of aquatic ecosystem. The restoration of aquatic vegetation has been considered a practical approach to offset the deterioration of aquatic ecosystem. However, a lack of knowledge still lies in the species selection in the revegetation when confronting the interference from microplastic pollution and exotic counterpart. The present study subjected the native submerged species, Hydrilla verticillata and its exotic confamilial, Elodea nuttallii to the current and future scenarios of polyamide microplastic pollution. The plant performance proxies including biomass and ramet number were measured. We found that the native H. verticillata maintained its performance while the exotic E. nuttallii showed decreases in biomass and ramet number under severest pollution conditions. The restoration of native submerged plant such as H. verticillata appeared to be more effective in stabilizing aquatic vegetation in the scenario of accelerating microplastic pollution. In order to explore the underlying driving mechanism of performance differentiation, stress tolerance indicators for plants, sediment enzymatic activity and sediment fungal microbiome were investigated. We found that polyamide microplastic had weak effects on stress tolerance indicators for plants, sediment enzymatic activity and sediment fungal diversity, reflecting the decoupling between these indicators and plant performance. However, the relative abundance of sediment arbuscular mycorrhizal fungi for H. verticillata significantly increased while E. nuttallii gathered "useless" ectomycorrhizal fungi at the presence of severest polyamide microplastic pollution. We speculate that the arbuscular mycorrhizal fungi assisted the stabilization of plant performance for H. verticillata with exposure to the severest polyamide microplastic pollution.


Asunto(s)
Hydrocharitaceae , Microplásticos , Contaminantes Químicos del Agua , Humedales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Microplásticos/análisis , Hydrocharitaceae/efectos de los fármacos , Nylons , Biomasa , Sedimentos Geológicos/química , Restauración y Remediación Ambiental , Especies Introducidas
12.
J Hazard Mater ; 476: 135146, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38991643

RESUMEN

The pathway for pollutant degradation involving reactive oxygen species (ROS) in the rhizosphere is poorly understood. Herein, a rootchip system was developed to pinpoint the ROS hotspot along the root tip of Iris tectorum. Through mass balance analysis and quenching experiment, we revealed that ROS contributed significantly to rhizodegradation for beta-blockers, ranging from 22.18 % for betaxolol to 83.83 % for atenolol. The identification of degradation products implicated ROS as an important agent to degrade atenolol into less toxic transformation products during phytoremediation. Moreover, an active production of ROS in rhizosphere was identified by mesocosm experiment. Across three root-associated regions aquatic plants inhabiting the rhizosphere accumulated the highest •OH of ∼1200 nM after 3 consecutive days, followed by rhizoplane (∼230 nM) and bulk environment (∼60 nM). ROS production patterns were driven by rhizosphere chemistry (Fe and humic substances) and microbiome variations in different rhizocompartments. These findings not only deepen understanding of ROS production in aquatic plants rhizosphere but also shed light on advancing phytoremediation strategies.


Asunto(s)
Antagonistas Adrenérgicos beta , Biodegradación Ambiental , Especies Reactivas de Oxígeno , Rizosfera , Contaminantes Químicos del Agua , Especies Reactivas de Oxígeno/metabolismo , Antagonistas Adrenérgicos beta/metabolismo , Contaminantes Químicos del Agua/metabolismo , Género Iris/metabolismo , Raíces de Plantas/metabolismo , Microbiota
13.
Oral Oncol ; 157: 106963, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39032343

RESUMEN

OBJECTIVE: There is a lack of effective biomarkers for predicting the distant metastasis in nasopharyngeal carcinoma (NPC). We aimed to explore the expression of FAP+Cancer-associated fibroblasts (CAFs) derived CXCL1 in NPC and its predictive values for distant metastasis and correlation with PD-L1 expression. MATERIALS AND METHODS: A total of 345 patients with locoregionally advanced NPC were retrospectively enrolled (the training cohort: the validation cohort = 160:185). Co-expression of CXCL1 and FAP and the expression of PD-L1 were detected by multi-immunofluorescence staining and immunohistochemistry, respectively. The primary end-point was distant metastasis-free survival (DMFS). The Kaplan-Meier method was used to calculate the survival. The Cox proportional hazards model was used to assess prognostic risk factors. RESULTS: A novel CXCL1+_FAP+ phenotype in CAFs was identified in NPC and then used to divide patients into low and high risk groups. Both in the training cohort and validation cohort, patients in the high risk group had poorer DMFS, overall survival (OS), progression-free survival (PFS) and locoregional relapse-free survival (LRFS) than patients in the low risk group. Multivariate analysis revealed CXCL1+_FAP+ phenotype was an independent prognostic factor for DMFS, OS, PFS and LRFS. Further results showed patients in the high risk group had higher PD-L1 expression than those in the low risk group. CONCLUSION: Our study showed CXCL1+_FAP+ phenotype in CAFs could effectively classified locoregionally advanced NPC patients into different risk groups for distant metastasis and might be a potential biomarker for anti-PD-1/PD-L1 immunotherapy.


Asunto(s)
Antígeno B7-H1 , Fibroblastos Asociados al Cáncer , Quimiocina CXCL1 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Antígeno B7-H1/metabolismo , Masculino , Femenino , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/mortalidad , Persona de Mediana Edad , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/mortalidad , Quimiocina CXCL1/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Adulto , Estudios Retrospectivos , Metástasis de la Neoplasia , Pronóstico , Fenotipo , Biomarcadores de Tumor/metabolismo , Anciano , Serina Endopeptidasas/metabolismo , Endopeptidasas/metabolismo , Proteínas de la Membrana/metabolismo
14.
Sci Total Environ ; 949: 174961, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39067584

RESUMEN

The potential ecological risk of per- and polyfluorinated alkyl substances (PFASs) in phytoremediation has raised social concerns, promoting a need to better understand their distribution and risks in the recovery process of aquatic plants. Herein, we aim to fill this knowledge gap by investigating the distribution and ecotoxicological effects of PFASs on the structure and function of water-macrophyte-sediment microcosm systems. Among the entire system, 63.0 %-73.1 % PFOA was found in sediments and submerged plants, however, 52.5 %-53.0 % of PFPeA and 47.0 %-47.5 % of PFBS remained in the water under different treatments. PFOA was more bioavailable than the other substances, as demonstrated by the bioaccumulation factors (BAF) with ranges exposed to PFPeA and PFBS. Bioaccumulation PFASs induced plant oxidative stress which generates enzymes to suppress superoxide, and disturbed the processes of lysine biosynthesis, in which allysine, meso-2,6-diaminoheptanedioate, and Nsuccinyl-2-amino-6-ketopimelate were downregulated. PFASs were detected in the propagator (turions) of an ecological restoration species, where short-chain PFASs (70.1 % and 45.7 % for 2 or 20 µg/L PFAS exposure, respectively) were found to spread further into new individuals and profoundly influence ecological processes shaping populations. PFASs significantly enhanced the number of microbial species in the sediment, but the degree of differentiation in the microbial community structure was not significantly different. This study enhances our understanding of the ecological mechanisms of PFASs in the water-macrophyte-sediment systems and potential threats to the recovery process of macrophytes.


Asunto(s)
Biodegradación Ambiental , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Fluorocarburos/metabolismo , Plantas/metabolismo , Plantas/efectos de los fármacos , Hidrocarburos Fluorados/metabolismo , Sedimentos Geológicos/química
15.
Telemed Rep ; 5(1): 212-218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081454

RESUMEN

Background: There has been an exponential growth in the use of telemedicine services to provide clinical care. However, the safety and effectiveness of telemedicine in cancer-related colostomy care during the early stages of discharge remain unclear. This study aimed to support that the safety and effectiveness of telemedicine in cancer-related colostomy care were not inferior to those of outpatient care. Methods: This was a prospective randomized noninferiority study. A total of 76 consecutive patients who underwent cancer-related colostomy stoma were enrolled and randomly divided into a telemedicine group or an outpatient group with an equal allocation ratio (1:1). The outpatient group was provided in-person interview mode colostomy care, whereas the telemedicine group was provided video interview mode colostomy care. The stoma-related complications, self-care ability, and quality of life reflected the safety and effectiveness of colostomy care in the early stages of discharge. Results: The incidence of stoma-related complications within two weeks and one month after discharge was not significantly different between the two groups (p 2-weeks = 0.772 and p 1-month = 0.760). The mean NCI-CTCAE score for stoma-related complications was less than level 2. The ESCA and C-COH-QOL-OQ scores were not significantly different between the telemedicine and outpatient groups at two weeks and one month after discharge (all p > 0.05). Conclusion: The results revealed that the safety and effectiveness of telemedicine for cancer-related colostomies in the early stages of discharge were not inferior to those of outpatient care alone.

16.
Inorg Chem ; 63(31): 14550-14558, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39051734

RESUMEN

Nonlinear optical (NLO) coherent light sources are widely applied in many areas of science and technology. As the core medium, the NLO material is required to have a wide transparent range, a large NLO response, and a high laser damaged threshold (LDT). It is common knowledge that langasite (La3Ga5SiO14, LGS) crystal has an underdeveloped second-harmonic generation (SHG) coefficient and a small birefringence, which seriously restrict its application in the NLO field, despite that it has a broad transmittance spectrum and a moderate LDT. Herein, we have successfully obtained novel langasite NLO crystals LGSS (La3Ga5Si0.5Sn0.5O14) and LGGS (La3Ga5Ge0.5Sn0.5O14), with short UV absorption edges of 209 and 212 nm, respectively. Incorporating heavy ions Sn4+ into the structure, a distorted BO6 octahedron was adjusted by the radius difference between Sn4+ and Si4+/Ge4+, which caused the strong SHG responses in LGSS (∼10.77 × KDP) and LGGS (∼9.23 × KDP) and increased birefringences of 0.034 and 0.025, respectively. Besides, they also had large energy band gaps (4.95 eV for LGSS, and 4.93 eV for LGGS), which allowed high LDTs with LGSS of 1.3 GW/cm2 and LGGS of 813 MW/cm2. This work demonstrates a new strategy to enhance SHG responses and birefringence for existing NLO materials and enriches langasite family crystals.

17.
Medicine (Baltimore) ; 103(25): e38543, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905431

RESUMEN

BACKGROUND: Fibrolipoma of the lower lip is an uncommon condition with limited documentation in the literature. This paper provides updated insights into oral and maxillofacial lipomas through a detailed case report and comprehensive literature review, discussing clinical features, pathogenesis, diagnostic approaches, histopathology, and therapeutic strategies. CASE PRESENTATION: A 54-year-old female presented with a painless, enlarging mass on the inner aspect of her right lower lip, first noticed 2 years prior. The mass, now the size of a peanut, interfered with her eating and speech. Physical examination revealed a 2.0 × 2.5 × 1.0 cm mass beneath the mucous membrane of the right lower lip. It was firm, well-demarcated, and mobile. Surgical excision was performed, and histopathological analysis confirmed the diagnosis of a lower lip fibrolipoma. The lesion was successfully removed without recurrence. CONCLUSION: Lipomas in the oral and maxillofacial regions are rare, slow-growing benign tumors, particularly within the lips. Although their diagnosis is straightforward based on clinical presentation, histopathological confirmation is essential. Surgical resection remains the treatment of choice, with excellent prognostic outcomes.


Asunto(s)
Neoplasias de los Labios , Lipoma , Humanos , Femenino , Persona de Mediana Edad , Lipoma/diagnóstico , Lipoma/cirugía , Lipoma/patología , Neoplasias de los Labios/patología , Neoplasias de los Labios/cirugía , Neoplasias de los Labios/diagnóstico , Labio/patología , Labio/cirugía
18.
Angew Chem Int Ed Engl ; 63(30): e202406318, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38715104

RESUMEN

Achieving the extreme balance of the key performance requirements is the crucial to breakthrough the application bottleneck for nonlinear optical (NLO) materials. Herein, by assembly of the π-conjugated [B3O6] functional species with the aid of structure-directing property of mer-isomer [YO3F3] octahedra, a new ultraviolet (UV) NLO material, Cs2YB3O6F2 with aligned arrangement of coplanar [B3O6] groups has been synthesized. The polar material exhibits the rare coexistence of the largest second harmonic generation response of 5.6×KDP, the largest birefringence of 0.091 at 532 nm, the shortest Type I phase-matching down to 200.5 nm and deep-ultraviolet transparency among reported acentric rare-earth borates with [B3O6] groups. Remarkably, benefiting from the enhanced bonding force among functional units [B3O6], a firm three-dimensional framework is constructed, which facilitates the growth of large crystals. This can be proved by a block shape crystal with dimensional of 6×5×4 mm3, indicating that it was a promising UV NLO crystal. This work provides a powerful strategy to design UV NLO materials with good performances.

19.
J Clin Invest ; 134(13)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722683

RESUMEN

This study reports that targeting intrinsically disordered regions of the voltage-gated sodium channel 1.7 (NaV1.7) protein facilitates discovery of sodium channel inhibitory peptide aptamers (NaViPA) for adeno-associated virus-mediated (AAV-mediated), sensory neuron-specific analgesia. A multipronged inhibition of INa1.7, INa1.6, INa1.3, and INa1.1 - but not INa1.5 and INa1.8 - was found for a prototype and named NaViPA1, which was derived from the NaV1.7 intracellular loop 1, and is conserved among the TTXs NaV subtypes. NaViPA1 expression in primary sensory neurons (PSNs) of dorsal root ganglia (DRG) produced significant inhibition of TTXs INa but not TTXr INa. DRG injection of AAV6-encoded NaViPA1 significantly attenuated evoked and spontaneous pain behaviors in both male and female rats with neuropathic pain induced by tibial nerve injury (TNI). Whole-cell current clamp of the PSNs showed that NaViPA1 expression normalized PSN excitability in TNI rats, suggesting that NaViPA1 attenuated pain by reversal of injury-induced neuronal hypersensitivity. IHC revealed efficient NaViPA1 expression restricted in PSNs and their central and peripheral terminals, indicating PSN-restricted AAV biodistribution. Inhibition of sodium channels by NaViPA1 was replicated in the human iPSC-derived sensory neurons. These results summate that NaViPA1 is a promising analgesic lead that, combined with AAV-mediated PSN-specific block of multiple TTXs NaVs, has potential as a peripheral nerve-restricted analgesic therapeutic.


Asunto(s)
Dependovirus , Canal de Sodio Activado por Voltaje NAV1.7 , Células Receptoras Sensoriales , Animales , Ratas , Dependovirus/genética , Células Receptoras Sensoriales/metabolismo , Masculino , Humanos , Femenino , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/genética , Ganglios Espinales/metabolismo , Ratas Sprague-Dawley , Neuralgia/metabolismo , Neuralgia/genética , Neuralgia/tratamiento farmacológico , Analgesia
20.
Cereb Cortex ; 34(13): 63-71, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696609

RESUMEN

To investigate potential correlations between the susceptibility values of certain brain regions and the severity of disease or neurodevelopmental status in children with autism spectrum disorder (ASD), 18 ASD children and 15 healthy controls (HCs) were recruited. The neurodevelopmental status was assessed by the Gesell Developmental Schedules (GDS) and the severity of the disease was evaluated by the Autism Behavior Checklist (ABC). Eleven brain regions were selected as regions of interest and the susceptibility values were measured by quantitative susceptibility mapping. To evaluate the diagnostic capacity of susceptibility values in distinguishing ASD and HC, the receiver operating characteristic (ROC) curve was computed. Pearson and Spearman partial correlation analysis were used to depict the correlations between the susceptibility values, the ABC scores, and the GDS scores in the ASD group. ROC curves showed that the susceptibility values of the left and right frontal white matter had a larger area under the curve in the ASD group. The susceptibility value of the right globus pallidus was positively correlated with the GDS-fine motor scale score. These findings indicated that the susceptibility value of the right globus pallidus might be a viable imaging biomarker for evaluating the neurodevelopmental status of ASD children.


Asunto(s)
Trastorno del Espectro Autista , Encéfalo , Hierro , Imagen por Resonancia Magnética , Humanos , Trastorno del Espectro Autista/diagnóstico por imagen , Masculino , Femenino , Niño , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Hierro/metabolismo , Hierro/análisis , Preescolar , Mapeo Encefálico/métodos , Sustancia Blanca/diagnóstico por imagen , Globo Pálido/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA