Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Research (Wash D C) ; 7: 0399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015204

RESUMEN

With the development of artificial intelligence and breakthroughs in deep learning, large-scale foundation models (FMs), such as generative pre-trained transformer (GPT), Sora, etc., have achieved remarkable results in many fields including natural language processing and computer vision. The application of FMs in autonomous driving holds considerable promise. For example, they can contribute to enhancing scene understanding and reasoning. By pre-training on rich linguistic and visual data, FMs can understand and interpret various elements in a driving scene, and provide cognitive reasoning to give linguistic and action instructions for driving decisions and planning. Furthermore, FMs can augment data based on the understanding of driving scenarios to provide feasible scenes of those rare occurrences in the long tail distribution that are unlikely to be encountered during routine driving and data collection. The enhancement can subsequently lead to improvement in the accuracy and reliability of autonomous driving systems. Another testament to the potential of FMs' applications lies in world models, exemplified by the DREAMER series, which showcases the ability to comprehend physical laws and dynamics. Learning from massive data under the paradigm of self-supervised learning, world models can generate unseen yet plausible driving environments, facilitating the enhancement in the prediction of road users' behaviors and the off-line training of driving strategies. In this paper, we synthesize the applications and future trends of FMs in autonomous driving. By utilizing the powerful capabilities of FMs, we strive to tackle the potential issues stemming from the long-tail distribution in autonomous driving, consequently advancing overall safety in this domain.

2.
J Acoust Soc Am ; 155(6): 3606-3614, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38833282

RESUMEN

Surface and underwater (S/U) acoustic targets recognition is an important application of passive sonar. It is difficult to distinguish them due to the mixture of underwater target radiation noise and marine environmental noise. In previous studies, although using a single hydrophone was able to identify S/U acoustic targets, there were still a few hydrophones that had poor accuracy. In this paper, S/U acoustic targets recognition using two hydrophones based on Gradient Boosting Decision Tree is proposed, and it is first found out as high as 100% accuracy could be achieved with the implementation of SACLANT 1993 data. The real experimental data are always rare and insufficient. The big training dataset is generated using environmental information by acoustic model named KRAKEN. Simulation and experimental data used in the model are heterogeneous, and the differences between these two kinds of data are assimilated by using vertical linear array feature extraction method. The model realizes the recognition of S/U acoustic targets based on channel information besides source spectrum information. By using the combination of two hydrophones, the surface and underwater targets recognition accuracy reached 1 and 0.9384, while they are only 0.4715 and 0.5620 using a single hydrophone, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA