Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Oncol ; 13: 1162027, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37476375

RESUMEN

Pleural mesothelioma (PM) is a highly aggressive, fast-growing asbestos-induced cancer with limited effective treatments. There has been interest in using naturally occurring anticancer agents derived from plant materials for the treatment of PM. However, it is unclear if an aqueous extract from Leptospermum polygalifolium (QV0) has activity against PM. Here we investigated the anti-cancer properties of QV0 and Defender® (QV0 dietary formula) in vitro and in vivo, respectively. QV0 suppressed the growth of eight PM cell lines in a dose-dependent manner, effective at concentrations as low as 0.02% w/v (equivalent to 0.2 mg/ml). This response was found to be associated with inhibited cell migration, proliferation, and colony formation but without evident cell cycle alteration. We observed mitochondrial dysfunction post-QV0 treatment, as evidenced by significantly decreased basal and maximal oxygen consumption rates. Ten SCID mice were treated with 0.25 mg/g Defender® daily and exhibited reduced tumor size over 30 days, which was associated with an average extension of seven days of mouse life. There was no evidence of liver toxicity or increased blood glucose post-treatment in animals treated with Defender®. Significantly enhanced tumor apoptosis was observed in the Defender®-treated animals, correlating to mitochondrial dysfunction. Lastly, the high levels of polyphenols and antioxidant properties of QV0 and Defender® were detected in HPLC analysis. To the best of our knowledge, this study constitutes the first demonstration of an improved host survival (without adverse effects) response in a QV0-treated PM mouse model, associated with evident inhibition of PM cell growth and mitochondrial dysfunction-related enhancement of tumor apoptosis.

2.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34638565

RESUMEN

Malignant pleural mesothelioma (MPM) is an aggressive malignancy with limited effective treatment options. Focal adhesion kinase (FAK) inhibitors have been shown to efficiently suppress MPM cell growth initially, with limited utility in the current clinical setting. In this study, we utilised a large collection of MPM cell lines and MPM tissue samples to study the role of E-cadherin (CDH1) and microRNA on the efficacy of FAK inhibitors in MPM. The immunohistochemistry (IHC) results showed that the majority of MPM FFPE samples exhibited either the absence of, or very low, E-cadherin protein expression in MPM tissue. We showed that MPM cells with high CDH1 mRNA levels exhibited resistance to the FAK inhibitor PND-1186. In summary, MPM cells that did not express CDH1 mRNA were sensitive to PND-1186, and MPM cells that retained CDH1 mRNA were resistant. A cell cycle analysis showed that PND-1186 induced cell cycle disruption by inducing the G2/M arrest of MPM cells. A protein-protein interaction study showed that EGFR is linked to the FAK pathway, and a target scan of the microRNAs revealed that microRNAs (miR-17, miR221, miR-222, miR137, and miR148) interact with EGFR 3'UTR. Transfection of MPM cells with these microRNAs sensitised the CHD1-expressing FAK-inhibitor-resistant MPM cells to the FAK inhibitor.


Asunto(s)
Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Mesotelioma Maligno/tratamiento farmacológico , Mesotelioma Maligno/genética , MicroARNs/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Aminopiridinas/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Receptores ErbB/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Mapas de Interacción de Proteínas
3.
Front Oncol ; 10: 579327, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304846

RESUMEN

BACKGROUND: The diagnosis of malignant pleural mesothelioma (MPM) can be difficult, in part due to the difficulty in distinguishing between MPM and reactive mesothelial hyperplasia (RMH). The tumor suppressor gene, CDKN2A, is frequently silenced by epigenetic mechanisms in many cancers; in the case of MPM it is mostly silenced via genomic deletion. Co-deletion of the CDKN2A and methylthioadenosine phosphorylase (MTAP) genes has been researched extensively and discovered to be a highly specific characteristic of MPM. Most studies have used FISH to detect the deletion of CDKN2A and IHC for MTAP as a surrogate for this. In this study, we aim to investigate and validate droplet digital PCR (ddPCR) as an emerging alternative and efficient testing method in diagnosing MPM, by particularly emphasizing on the loss of MTAP and CDKN2A. METHODS: This study included 75 formalin fixed paraffin embedded (FFPE) MPM tissue, and 12 normal pleural tissue and 10 RMH as control. Additionally, primary MPM cell lines and normal pleural samples were used as biomarker detection controls, as established in our previous publication. All FFPE specimens were processed to isolate the DNA, that was subsequently used for ddPCR detection of CDKN2A and MTAP. FFPE samples were also analyzed by fluorescence in situ hybridization (FISH) for CDKN2A and MTAP deletion, and for MTAP IHC expression. Concordance of IHC and ddPCR with FISH were studied in these samples. RESULTS: 95% and 82% of cases showed co-deletion of both MTAP and CDKN2A when determined by FISH and ddPCR respectively. ddPCR has a sensitivity of 72% and specificity of 100% in detecting CDKN2A homozygous loss in MPM. ddPCR also has a concordance rate of 92% with FISH in detecting homozygous loss of CDKN2A. MTAP IHC was 68% sensitive and 100% specific for detecting CDKN2A homozygous loss in MPM when these losses were determined by ddPCR. CONCLUSION: Our study confirms that MTAP is often co-deleted with CDKN2A in MPM. Our in-house designed ddPCR assays for MTAP and CDKN2A are useful in differentiating MPM from RMH, and is highly concordant with FISH that is currently used in diagnosing MPM. ddPCR detection of these genetic losses can potentially be utilized as an alternative method in the diagnosis of MPM and for the future development of a less-invasive MPM-specific detection technique on MPM tumor tissue DNA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA