Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Commun ; 15(1): 3531, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670961

RESUMEN

E6AP dysfunction is associated with Angelman syndrome and Autism spectrum disorder. Additionally, the host E6AP is hijacked by the high-risk HPV E6 to aberrantly ubiquitinate the tumor suppressor p53, which is linked with development of multiple types of cancer, including most cervical cancers. Here we show that E6AP and the E6AP/E6 complex exist, respectively, as a monomer and a dimer of the E6AP/E6 protomer. The short α1-helix of E6AP transforms into a longer helical structure when in complex with E6. The extended α1-helices of the dimer intersect symmetrically and contribute to the dimerization. The two protomers sway around the crossed region of the two α1-helices to promote the attachment and detachment of substrates to the catalytic C-lobe of E6AP, thus facilitating ubiquitin transfer. These findings, complemented by mutagenesis analysis, suggest that the α1-helix, through conformational transformations, controls the transition between the inactive monomer and the active dimer of E6AP.


Asunto(s)
Multimerización de Proteína , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Humanos , Ubiquitina/metabolismo , Ubiquitina/química , Ubiquitinación , Modelos Moleculares , Cristalografía por Rayos X , Proteínas Oncogénicas Virales/metabolismo , Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Unión Proteica , Conformación Proteica en Hélice alfa
2.
Nat Commun ; 14(1): 2025, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041152

RESUMEN

The portal-scaffold complex is believed to nucleate the assembly of herpesvirus procapsids. During capsid maturation, two events occur: scaffold expulsion and DNA incorporation. The portal-scaffold interaction and the conformational changes that occur to the portal during the different stages of capsid formation have yet to be elucidated structurally. Here we present high-resolution structures of the A- and B-capsids and in-situ portals of human cytomegalovirus. We show that scaffolds bind to the hydrophobic cavities formed by the dimerization and Johnson-fold domains of the major capsid proteins. We further show that 12 loop-helix-loop fragments-presumably from the scaffold domain-insert into the hydrophobic pocket of the portal crown domain. The portal also undergoes significant changes both positionally and conformationally as it accompanies DNA packaging. These findings unravel the mechanism by which the portal interacts with the scaffold to nucleate capsid assembly and further our understanding of scaffold expulsion and DNA incorporation.


Asunto(s)
Cápside , Herpesvirus Humano 1 , Humanos , Cápside/metabolismo , Microscopía por Crioelectrón , Citomegalovirus/genética , Proteínas Virales/metabolismo , Herpesvirus Humano 1/genética , Ensamble de Virus/genética , Proteínas de la Cápside/metabolismo , ADN/metabolismo
3.
Cell Discov ; 8(1): 133, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513640

RESUMEN

Stimulator of interferon gene (STING) is increasingly exploited for the potential in cancer immunotherapy, yet its mechanism of activation remains not fully understood. Herein, we designed a novel STING agonist, designated as HB3089 that exhibits robust and durable anti-tumor activity in tumor models across various cancer types. Cryo-EM analysis reveals that HB3089-bound human STING has structural changes similar to that of the STING mutant V147L, a constitutively activated mutant identified in patients with STING-associated vasculopathy with onset in infancy (SAVI). Both structures highlight the conformational changes of the transmembrane domain (TMD), but without the 180°-rotation of the ligand binding domain (LBD) previously shown to be required for STING activation. Further structure-based functional analysis confirmed a new STING activation mode shared by the agonist and the SAVI-related mutation, in which the connector linking the LBD and the TMD senses the activation signal and controls the conformational changes of the LBD and the TMD for STING activation. Together, our findings lead to a new working model for STING activation and open a new avenue for the rationale design of STING-targeted therapies either for cancer or autoimmune disorders.

4.
Mol Cell ; 82(14): 2681-2695.e6, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35714614

RESUMEN

Serotonin (or 5-hydroxytryptamine, 5-HT) is an important neurotransmitter that activates 12 different G protein-coupled receptors (GPCRs) through selective coupling of Gs, Gi, or Gq proteins. The structural basis for G protein subtype selectivity by these GPCRs remains elusive. Here, we report the structures of the serotonin receptors 5-HT4, 5-HT6, and 5-HT7 with Gs, and 5-HT4 with Gi1. The structures reveal that transmembrane helices TM5 and TM6 alternate lengths as a macro-switch to determine receptor's selectivity for Gs and Gi, respectively. We find that the macro-switch by the TM5-TM6 length is shared by class A GPCR-G protein structures. Furthermore, we discover specific residues within TM5 and TM6 that function as micro-switches to form specific interactions with Gs or Gi. Together, these results present a common mechanism of Gs versus Gi protein coupling selectivity or promiscuity by class A GPCRs and extend the basis of ligand recognition at serotonin receptors.


Asunto(s)
Receptores Acoplados a Proteínas G , Serotonina , Proteínas de Unión al GTP/metabolismo , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo
5.
Nat Commun ; 12(1): 4538, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315863

RESUMEN

How the human cytomegalovirus (HCMV) genome-the largest among human herpesviruses-is packaged, retained, and ejected remains unclear. We present the in situ structures of the symmetry-mismatched portal and the capsid vertex-specific components (CVSCs) of HCMV. The 5-fold symmetric 10-helix anchor-uncommon among known portals-contacts the portal-encircling DNA, which is presumed to squeeze the portal as the genome packaging proceeds. We surmise that the 10-helix anchor dampens this action to delay the portal reaching a "head-full" packaging state, thus facilitating the large genome to be packaged. The 6-fold symmetric turret, latched via a coiled coil to a helix from a major capsid protein, supports the portal to retain the packaged genome. CVSCs at the penton vertices-presumed to increase inner capsid pressure-display a low stoichiometry, which would aid genome retention. We also demonstrate that the portal and capsid undergo conformational changes to facilitate genome ejection after viral cell entry.


Asunto(s)
Citomegalovirus/química , Citomegalovirus/genética , Empaquetamiento del ADN/genética , Genoma Viral , Cápside/química , Cápside/ultraestructura , Proteínas de la Cápside/metabolismo , Línea Celular , Citomegalovirus/ultraestructura , ADN Viral/genética , ADN Viral/ultraestructura , Humanos , Modelos Moleculares , Homología Estructural de Proteína , Virión/química , Virión/ultraestructura
6.
Nat Struct Mol Biol ; 28(3): 319-325, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33674802

RESUMEN

The COVID-19 pandemic caused by nonstop infections of SARS-CoV-2 has continued to ravage many countries worldwide. Here we report that suramin, a 100-year-old drug, is a potent inhibitor of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and acts by blocking the binding of RNA to the enzyme. In biochemical assays, suramin and its derivatives are at least 20-fold more potent than remdesivir, the currently approved nucleotide drug for treatment of COVID-19. The 2.6 Å cryo-electron microscopy structure of the viral RdRp bound to suramin reveals two binding sites. One site directly blocks the binding of the RNA template strand and the other site clashes with the RNA primer strand near the RdRp catalytic site, thus inhibiting RdRp activity. Suramin blocks viral replication in Vero E6 cells, although the reasons underlying this effect are likely various. Our results provide a structural mechanism for a nonnucleotide inhibitor of the SARS-CoV-2 RdRp.


Asunto(s)
Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , ARN Polimerasa Dependiente de ARN de Coronavirus/química , Inhibidores Enzimáticos/farmacología , Suramina/farmacología , Animales , Antivirales/química , Antivirales/metabolismo , Sitios de Unión , Dominio Catalítico , Chlorocebus aethiops , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Microscopía por Crioelectrón , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Conformación Proteica , ARN Viral/química , ARN Viral/metabolismo , SARS-CoV-2/efectos de los fármacos , Suramina/química , Suramina/metabolismo , Células Vero , Replicación Viral/efectos de los fármacos
7.
Mol Cell ; 81(6): 1147-1159.e4, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33548201

RESUMEN

The dopamine system, including five dopamine receptors (D1R-D5R), plays essential roles in the central nervous system (CNS), and ligands that activate dopamine receptors have been used to treat many neuropsychiatric disorders. Here, we report two cryo-EM structures of human D3R in complex with an inhibitory G protein and bound to the D3R-selective agonists PD128907 and pramipexole, the latter of which is used to treat patients with Parkinson's disease. The structures reveal agonist binding modes distinct from the antagonist-bound D3R structure and conformational signatures for ligand-induced receptor activation. Mutagenesis and homology modeling illuminate determinants of ligand specificity across dopamine receptors and the mechanisms for Gi protein coupling. Collectively our work reveals the basis of agonist binding and ligand-induced receptor activation and provides structural templates for designing specific ligands to treat CNS diseases targeting the dopaminergic system.


Asunto(s)
Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Modelos Moleculares , Complejos Multiproteicos/ultraestructura , Receptores de Dopamina D3/química , Benzopiranos/química , Células HEK293 , Humanos , Complejos Multiproteicos/química , Oxazinas/química , Pramipexol/química , Dominios Proteicos , Relación Estructura-Actividad
8.
Cell Res ; 30(10): 873-884, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32620850

RESUMEN

Epstein-Barr virus (EBV) is the primary cause of infectious mononucleosis and has been shown to be closely associated with various malignancies. Here, we present a complete atomic model of EBV, including the icosahedral capsid, the dodecameric portal and the capsid-associated tegument complex (CATC). Our in situ portal from the tegumented capsid adopts a closed conformation with its channel valve holding the terminal viral DNA and with its crown region firmly engaged by three layers of ring-like dsDNA, which, together with the penton flexibility, effectively alleviates the capsid inner pressure placed on the portal cap. In contrast, the CATCs, through binding to the flexible penton vertices in a stoichiometric manner, accurately increase the inner capsid pressure to facilitate the pressure-driven genome delivery. Together, our results provide important insights into the mechanism by which the EBV capsid, portal, packaged genome and the CATCs coordinately achieve a pressure balance to simultaneously benefit both viral genome retention and ejection.


Asunto(s)
Cápside/ultraestructura , Herpesvirus Humano 4/ultraestructura , Sustancias Macromoleculares/química , Modelos Moleculares , Cápside/química , Proteínas de la Cápside/química , Microscopía por Crioelectrón , ADN Viral/química , Herpesvirus Humano 4/química
11.
Cell Res ; 29(12): 971-983, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31776446

RESUMEN

Arrestins comprise a family of signal regulators of G-protein-coupled receptors (GPCRs), which include arrestins 1 to 4. While arrestins 1 and 4 are visual arrestins dedicated to rhodopsin, arrestins 2 and 3 (Arr2 and Arr3) are ß-arrestins known to regulate many nonvisual GPCRs. The dynamic and promiscuous coupling of Arr2 to nonvisual GPCRs has posed technical challenges to tackle the basis of arrestin binding to GPCRs. Here we report the structure of Arr2 in complex with neurotensin receptor 1 (NTSR1), which reveals an overall assembly that is strikingly different from the visual arrestin-rhodopsin complex by a 90° rotation of Arr2 relative to the receptor. In this new configuration, intracellular loop 3 (ICL3) and transmembrane helix 6 (TM6) of the receptor are oriented toward the N-terminal domain of the arrestin, making it possible for GPCRs that lack the C-terminal tail to couple Arr2 through their ICL3. Molecular dynamics simulation and crosslinking data further support the assembly of the Arr2‒NTSR1 complex. Sequence analysis and homology modeling suggest that the Arr2‒NTSR1 complex structure may provide an alternative template for modeling arrestin-GPCR interactions.


Asunto(s)
Receptores de Neurotensina , Arrestina beta 2 , Humanos , Simulación del Acoplamiento Molecular/métodos , Unión Proteica , Conformación Proteica , Receptores de Neurotensina/química , Receptores de Neurotensina/metabolismo , Arrestina beta 2/química , Arrestina beta 2/metabolismo
12.
PLoS Pathog ; 15(2): e1007615, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30779794

RESUMEN

Cytomegalovirus (CMV) infection causes birth defects and life-threatening complications in immunosuppressed patients. Lack of vaccine and need for more effective drugs have driven widespread ongoing therapeutic development efforts against human CMV (HCMV), mostly using murine CMV (MCMV) as the model system for preclinical animal tests. The recent publication (Yu et al., 2017, DOI: 10.1126/science.aam6892) of an atomic model for HCMV capsid with associated tegument protein pp150 has infused impetus for rational design of novel vaccines and drugs, but the absence of high-resolution structural data on MCMV remains a significant knowledge gap in such development efforts. Here, by cryoEM with sub-particle reconstruction method, we have obtained the first atomic structure of MCMV capsid with associated pp150. Surprisingly, the capsid-binding patterns of pp150 differ between HCMV and MCMV despite their highly similar capsid structures. In MCMV, pp150 is absent on triplex Tc and exists as a "Λ"-shaped dimer on other triplexes, leading to only 260 groups of two pp150 subunits per capsid in contrast to 320 groups of three pp150 subunits each in a "Δ"-shaped fortifying configuration. Many more amino acids contribute to pp150-pp150 interactions in MCMV than in HCMV, making MCMV pp150 dimer inflexible thus incompatible to instigate triplex Tc-binding as observed in HCMV. While pp150 is essential in HCMV, our pp150-deletion mutant of MCMV remained viable though with attenuated infectivity and exhibiting defects in retaining viral genome. These results thus invalidate targeting pp150, but lend support to targeting capsid proteins, when using MCMV as a model for HCMV pathogenesis and therapeutic studies.


Asunto(s)
Proteínas de la Cápside/ultraestructura , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiología , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/fisiología , Animales , Cápside , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón/métodos , Citomegalovirus/genética , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidad , Infecciones por Citomegalovirus/metabolismo , Genoma Viral/genética , Humanos , Ratones , Muromegalovirus/metabolismo , Muromegalovirus/patogenicidad , Fosfoproteínas/ultraestructura , Eliminación de Secuencia/genética , Proteínas de la Matriz Viral/ultraestructura , Virión , Ensamble de Virus
13.
PLoS Pathog ; 14(12): e1007452, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30507948

RESUMEN

Human cytomegalovirus (HCMV) enters host by glycoprotein B (gB)-mediated membrane fusion upon receptor-binding to gH/gL-related complexes, causing devastating diseases such as birth defects. Although an X-ray crystal structure of the recombinant gB ectodomain at postfusion conformation is available, the structures of prefusion gB and its complex with gH/gL on the viral envelope remain elusive. Here, we demonstrate the utility of cryo electron tomography (cryoET) with energy filtering and the cutting-edge technologies of Volta phase plate (VPP) and direct electron-counting detection to capture metastable prefusion viral fusion proteins and report the structures of glycoproteins in the native environment of HCMV virions. We established the validity of our approach by obtaining cryoET in situ structures of the vesicular stomatitis virus (VSV) glycoprotein G trimer (171 kD) in prefusion and postfusion conformations, which agree with the known crystal structures of purified G trimers in both conformations. The excellent contrast afforded by these technologies has enabled us to identify gB trimers (303kD) in two distinct conformations in HCMV tomograms and obtain their in situ structures at up to 21 Å resolution through subtomographic averaging. The predominant conformation (79%), which we designate as gB prefusion conformation, fashions a globular endodomain and a Christmas tree-shaped ectodomain, while the minority conformation (21%) has a columnar tree-shaped ectodomain that matches the crystal structure of the "postfusion" gB ectodomain. We also observed prefusion gB in complex with an "L"-shaped density attributed to the gH/gL complex. Integration of these structures of HCMV glycoproteins in multiple functional states and oligomeric forms with existing biochemical data and domain organization of other class III viral fusion proteins suggests that gH/gL receptor-binding triggers conformational changes of gB endodomain, which in turn triggers two essential steps to actuate virus-cell membrane fusion: exposure of gB fusion loops and unfurling of gB ectodomain.


Asunto(s)
Citomegalovirus/fisiología , Tomografía con Microscopio Electrónico/métodos , Proteínas del Envoltorio Viral/ultraestructura , Internalización del Virus , Citomegalovirus/química , Citomegalovirus/ultraestructura , Infecciones por Citomegalovirus/transmisión , Humanos , Conformación Proteica
14.
Biochemistry ; 57(16): 2325-2334, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29608861

RESUMEN

Pyruvate dehydrogenase complex (PDC) is a large multienzyme complex that catalyzes the irreversible conversion of pyruvate to acetyl-coenzyme A with reduction of NAD+. Distinctive from PDCs in lower forms of life, in mammalian PDC, dihydrolipoyl acetyltransferase (E2; E2p in PDC) and dihydrolipoamide dehydrogenase binding protein (E3BP) combine to form a complex that plays a central role in the organization, regulation, and integration of catalytic reactions of PDC. However, the atomic structure and organization of the mammalian E2p/E3BP heterocomplex are unknown. Here, we report the structure of the recombinant dodecahedral core formed by the C-terminal inner-core/catalytic (IC) domain of human E2p determined at 3.1 Å resolution by cryo electron microscopy (cryoEM). The structure of the N-terminal fragment and four other surface areas of the human E2p IC domain exhibit significant differences from those of the other E2 crystal structures, which may have implications for the integration of E3BP in mammals. This structure also allowed us to obtain a homology model for the highly homologous IC domain of E3BP. Analysis of the interactions of human E2p or E3BP with their adjacent IC domains in the dodecahedron provides new insights into the organization of the E2p/E3BP heterocomplex and suggests a potential contribution by E3BP to catalysis in mammalian PDC.


Asunto(s)
Dihidrolipoamida Deshidrogenasa/química , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/química , Piruvato Deshidrogenasa (Lipoamida)/química , Complejo Piruvato Deshidrogenasa/química , Secuencia de Aminoácidos/genética , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Catálisis , Dominio Catalítico/genética , Microscopía por Crioelectrón , Dihidrolipoamida Deshidrogenasa/genética , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/genética , Humanos , Conformación Proteica , Piruvato Deshidrogenasa (Lipoamida)/genética , Complejo Piruvato Deshidrogenasa/genética
15.
Science ; 356(6345)2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28663444

RESUMEN

Herpesviruses possess a genome-pressurized capsid. The 235-kilobase genome of human cytomegalovirus (HCMV) is by far the largest of any herpesvirus, yet it has been unclear how its capsid, which is similar in size to those of other herpesviruses, is stabilized. Here we report a HCMV atomic structure consisting of the herpesvirus-conserved capsid proteins MCP, Tri1, Tri2, and SCP and the HCMV-specific tegument protein pp150-totaling ~4000 molecules and 62 different conformers. MCPs manifest as a complex of insertions around a bacteriophage HK97 gp5-like domain, which gives rise to three classes of capsid floor-defining interactions; triplexes, composed of two "embracing" Tri2 conformers and a "third-wheeling" Tri1, fasten the capsid floor. HCMV-specific strategies include using hexon channels to accommodate the genome and pp150 helix bundles to secure the capsid via cysteine tetrad-to-SCP interactions. Our structure should inform rational design of countermeasures against HCMV, other herpesviruses, and even HIV/AIDS.


Asunto(s)
Proteínas de la Cápside/química , Cápside/química , Citomegalovirus/química , Microscopía por Crioelectrón , Genoma Viral , Humanos , Fosfoproteínas/química , Proteínas de la Matriz Viral/química
16.
Nat Struct Mol Biol ; 23(1): 74-80, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26641711

RESUMEN

Viruses sense environmental cues such as pH to engage in membrane interactions for cell entry during infection, but how nonenveloped viruses sense pH is largely undefined. Here, we report both high- and low-pH structures of bluetongue virus (BTV), which enters cells via a two-stage endosomal process. The receptor-binding protein VP2 possesses a zinc finger that may function to maintain VP2 in a metastable state and a conserved His866, which senses early-endosomal pH. The membrane-penetration protein VP5 has three domains: dagger, unfurling and anchoring. Notably, the ß-meander motif of the anchoring domain contains a histidine cluster that can sense late-endosomal pH and also possesses four putative membrane-interaction elements. Exposing BTV to low pH detaches VP2 and dramatically refolds the dagger and unfurling domains of VP5. Our biochemical and structure-guided-mutagenesis studies support these coordinated pH-sensing mechanisms.


Asunto(s)
Virus de la Lengua Azul/efectos de los fármacos , Virus de la Lengua Azul/fisiología , Internalización del Virus/efectos de los fármacos , Secuencias de Aminoácidos , Virus de la Lengua Azul/química , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Análisis Mutacional de ADN , Endocitosis , Concentración de Iones de Hidrógeno , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica/efectos de los fármacos , Dedos de Zinc
17.
Nature ; 527(7579): 531-534, 2015 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-26503045

RESUMEN

Viruses in the Reoviridae, like the triple-shelled human rotavirus and the single-shelled insect cytoplasmic polyhedrosis virus (CPV), all package a genome of segmented double-stranded RNAs (dsRNAs) inside the viral capsid and carry out endogenous messenger RNA synthesis through a transcriptional enzyme complex (TEC). By direct electron-counting cryoelectron microscopy and asymmetric reconstruction, we have determined the organization of the dsRNA genome inside quiescent CPV (q-CPV) and the in situ atomic structures of TEC within CPV in both quiescent and transcribing (t-CPV) states. We show that the ten segmented dsRNAs in CPV are organized with ten TECs in a specific, non-symmetric manner, with each dsRNA segment attached directly to a TEC. The TEC consists of two extensively interacting subunits: an RNA-dependent RNA polymerase (RdRP) and an NTPase VP4. We find that the bracelet domain of RdRP undergoes marked conformational change when q-CPV is converted to t-CPV, leading to formation of the RNA template entry channel and access to the polymerase active site. An amino-terminal helix from each of two subunits of the capsid shell protein (CSP) interacts with VP4 and RdRP. These findings establish the link between sensing of environmental cues by the external proteins and activation of endogenous RNA transcription by the TEC inside the virus.


Asunto(s)
Genoma Viral , Complejos Multienzimáticos/ultraestructura , ARN Bicatenario/ultraestructura , ARN Viral/ultraestructura , ARN Polimerasa Dependiente del ARN/ultraestructura , Reoviridae/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/ultraestructura , Dominio Catalítico , Microscopía por Crioelectrón , Genoma Viral/genética , Modelos Moleculares , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Nucleósido-Trifosfatasa/metabolismo , Nucleósido-Trifosfatasa/ultraestructura , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Bicatenario/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Mensajero/ultraestructura , ARN Viral/biosíntesis , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Reoviridae/enzimología , Reoviridae/genética , Moldes Genéticos , Transcripción Genética
18.
Elife ; 4: e07901, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26240998

RESUMEN

mRNA transcription in dsRNA viruses is a highly regulated process but the mechanism of this regulation is not known. Here, by nucleoside triphosphatase (NTPase) assay and comparisons of six high-resolution (2.9-3.1 Å) cryo-electron microscopy structures of cytoplasmic polyhedrosis virus with bound ligands, we show that the large sub-domain of the guanylyltransferase (GTase) domain of the turret protein (TP) also has an ATP-binding site and is likely an ATPase. S-adenosyl-L-methionine (SAM) acts as a signal and binds the methylase-2 domain of TP to induce conformational change of the viral capsid, which in turn activates the putative ATPase. ATP binding/hydrolysis leads to an enlarged capsid for efficient mRNA synthesis, an open GTase domain for His217-mediated guanylyl transfer, and an open methylase-1 domain for SAM binding and methyl transfer. Taken together, our data support a role of the putative ATPase in mediating the activation of mRNA transcription and capping within the confines of the virus.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ARN Bicatenario/metabolismo , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Reoviridae/enzimología , Reoviridae/genética , Transcripción Genética , Microscopía por Crioelectrón , Reoviridae/ultraestructura , Proteínas Virales/metabolismo
19.
Nat Struct Mol Biol ; 22(5): 377-82, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25822993

RESUMEN

R-type pyocins are representatives of contractile ejection systems, a class of biological nanomachines that includes, among others, the bacterial type VI secretion system (T6SS) and contractile bacteriophage tails. We report atomic models of the Pseudomonas aeruginosa precontraction pyocin sheath and tube, and the postcontraction sheath, obtained by cryo-EM at 3.5-Å and 3.9-Å resolutions, respectively. The central channel of the tube is negatively charged, in contrast to the neutral and positive counterparts in T6SSs and phage tails. The sheath is interwoven by long N- and C-terminal extension arms emanating from each subunit, which create an extensive two-dimensional mesh that has the same connectivity in the extended and contracted state of the sheath. We propose that the contraction process draws energy from electrostatic and shape complementarities to insert the inner tube through bacterial cell membranes to eventually kill the bacteria.


Asunto(s)
Antibacterianos/química , Proteínas Contráctiles/ultraestructura , Nanotubos/química , Pseudomonas aeruginosa/patogenicidad , Piocinas/química , Proteínas Bacterianas/química , Sistemas de Secreción Bacterianos , Bacteriófagos/química , Membrana Celular/metabolismo , Proteínas Contráctiles/química , Cristalografía por Rayos X , Microscopía Electrónica , Modelos Moleculares , Estructura Secundaria de Proteína
20.
PLoS One ; 8(9): e69729, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039702

RESUMEN

The capsid shell of infectious hepatitis B virus (HBV) is composed of 240 copies of a single protein called HBV core antigen (HBc). An atomic model of a core assembled from truncated HBc was determined previously by X-ray crystallography. In an attempt to obtain atomic structural information of HBV core in a near native, non-crystalline environment, we reconstructed a 3.5Å-resolution structure of a recombinant core assembled from full-length HBc by cryo electron microscopy (cryoEM) and derived an atomic model. The structure shows that the 240 molecules of full-length HBc form a core with two layers. The outer layer, composed of the N-terminal assembly domain, is similar to the crystal structure of the truncated HBc, but has three differences. First, unlike the crystal structure, our cryoEM structure shows no disulfide bond between the Cys61 residues of the two subunits within the dimer building block, indicating such bond is not required for core formation. Second, our cryoEM structure reveals up to four more residues in the linker region (amino acids 140-149). Third, the loops in the cryoEM structures containing this linker region in subunits B and C are oriented differently (~30° and ~90°) from their counterparts in the crystal structure. The inner layer, composed of the C-terminal arginine-rich domain (ARD) and the ARD-bound RNAs, is partially-ordered and connected with the outer layer through linkers positioned around the two-fold axes. Weak densities emanate from the rims of positively charged channels through the icosahedral three-fold and local three-fold axes. We attribute these densities to the exposed portions of some ARDs, thus explaining ARD's accessibility by proteases and antibodies. Our data supports a role of ARD in mediating communication between inside and outside of the core during HBV maturation and envelopment.


Asunto(s)
Virus de la Hepatitis B/química , Proteínas del Núcleo Viral/química , Microscopía por Crioelectrón , Cistina/química , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas del Núcleo Viral/ultraestructura , Virión/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA