Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Colloid Interface Sci ; 677(Pt B): 259-270, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39146814

RESUMEN

There is an urgent need for highly active, durable, and low-cost electrocatalysts to overcome the shortcomings of high overpotential in the oxygen evolution reaction (OER) process. In this work, the nickel-iron hydroxysulfate rich in sulfate and oxygen vacancies (SO42-@Fe-NiOOH-Ov/NiS) is legitimately constructed. SO42-@Fe-NiOOH-Ov/NiS only requires a low overpotentials of 190 mV and 232 mV at 10 mA cm-2 and 100 mA cm-2 current densities in 1 M KOH, with excellent stability for 200 h at 100 mA cm-2 current density. In situ Raman spectroscopy and Fourier transform infrared spectroscopy demonstrated the stable adsorption of more SO42- on the surface of catalyst. Density functional theory calculations testify surface reconstruction, doped Fe and oxygen vacancies significantly reduced the adsorption energy of sulfate on the surface. More importantly, the formation of *OOH to O2 is facilitated by the highly hydrogen bonding between SO42- and *OOH, accelerating the OER process.

3.
Nat Commun ; 15(1): 5689, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38971796

RESUMEN

Leukemia is a kind of hematological malignancy originating from bone marrow, which provides essential signals for initiation, progression, and recurrence of leukemia. However, how to specifically deliver drugs to the bone marrow remains elusive. Here, we develop biomimetic vesicles by infusing hematopoietic stem and progenitor cell (HSPC) membrane with liposomes (HSPC liposomes), which migrate to the bone marrow of leukemic mice via hyaluronic acid-CD44 axis. Moreover, the biomimetic vesicles exhibit superior binding affinity to leukemia cells through intercellular cell adhesion molecule-1 (ICAM-1)/integrin ß2 (ITGB2) interaction. Further experiments validate that the vesicles carrying chemotherapy drug cytarabine (Ara-C@HSPC-Lipo) markedly inhibit proliferation, induce apoptosis and differentiation of leukemia cells, and decrease number of leukemia stem cells. Mechanically, RNA-seq reveals that Ara-C@HSPC-Lipo treatment induces apoptosis and differentiation and inhibits the oncogenic pathways. Finally, we verify that HSPC liposomes are safe in mice. This study provides a method for targeting bone marrow and treating leukemia.


Asunto(s)
Apoptosis , Médula Ósea , Citarabina , Sistemas de Liberación de Medicamentos , Células Madre Hematopoyéticas , Leucemia , Liposomas , Animales , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Ratones , Citarabina/farmacología , Médula Ósea/efectos de los fármacos , Médula Ósea/patología , Médula Ósea/metabolismo , Apoptosis/efectos de los fármacos , Leucemia/tratamiento farmacológico , Leucemia/patología , Humanos , Diferenciación Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Línea Celular Tumoral , Antígenos CD18/metabolismo , Proliferación Celular/efectos de los fármacos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo
4.
J Colloid Interface Sci ; 675: 36-51, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964123

RESUMEN

The defects formed by N doping always coexist with pyrrole nitrogen (Po) and pyridine nitrogen (Pd), and the synergistic mechanisms of H2O2 production and PMS activation between the different Po: Pd are unknown. This paper synthesized MOF-derived carbon materials with different nitrogen-type ratios as cathode materials in an electro-Fenton system using precursors with different nitrogen-containing functional groups. Several catalysts with different Po: Pd ratios (0:4, 1:3, 2:2, 3:1, 4:0) were prepared, and the best catalyst for LEV degradation was FC-CN (Po: Pd=3:1). X-ray Photoelectron Spectroscopy (XPS) and density-functional theory (DFT) calculations show that the introduction of nitrogen creates an interfacial micro-electric field (IMEF) in the carbon layer and the metal, accelerates the electron transfer from the carbon layer to the Co atoms, and promotes cycling between the Fe3+/Co2+ redox pairs, with the electron transfer reaching a maximum at Po: Pd = 3:1. FC-CN (Po: Pd=3:1) achieved more than 95 % LEV degradation in 90 min at pH = 3-9, with a lower energy consumption of 0.11 kWh m-3 order-1. and the energy consumption of the catalyst for LEV degradation is lower than that of those catalysts reported. In addition, the degradation pathway of LEV was proposed based on UPLC-MS and Fukui function. This study offers some valuable information for the application of MOF derivatives.

5.
Cancer Res ; 84(13): 2090-2108, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39082681

RESUMEN

Acute myeloid leukemia (AML) is an aggressive and heterogeneous hematologic malignancy. In elderly patients, AML incidence is high and has a poor prognosis due to a lack of effective therapies. G protein-coupled receptors (GPCR) play integral roles in physiologic processes and human diseases. Particularly, one third of adhesion GPCRs, the second largest group of GPCRs, are highly expressed in hematopoietic stem and progenitor cells or lineage cells. Here, we investigate the role of adhesion GPCRs in AML and whether they could be harnessed as antileukemia targets. Systematic screening of the impact of adhesion GPCRs on AML functionality by bioinformatic and functional analyses revealed high expression of ADGRE2 in AML, particularly in leukemic stem cells, which is associated with poor patient outcomes. Silencing ADGRE2 not only exerts antileukemic effects in AML cell lines and cells derived from patients with AML in vitro, but also delays AML progression in xenograft models in vivo. Mechanistically, ADGRE2 activates phospholipase Cß/protein kinase C/MEK/ERK signaling to enhance the expression of AP1 and transcriptionally drive the expression of DUSP1, a protein phosphatase. DUSP1 dephosphorylates Ser16 in the J-domain of the co-chaperone DNAJB1, which facilitates the DNAJB1-HSP70 interaction and maintenance of proteostasis in AML. Finally, combined inhibition of MEK, AP1, and DUSP1 exhibits robust therapeutic efficacy in AML xenograft mouse models. Collectively, this study deciphers the roles and mechanisms of ADGRE2 in AML and provides a promising therapeutic strategy for treating AML. Significance: Increased expression of the adhesion GPCR member ADGRE2 in AML supports leukemia stem cell self-renewal and leukemogenesis by modulating proteostasis via an MEK/AP1/DUSP1 axis, which can be targeted to suppress AML progression.


Asunto(s)
Leucemia Mieloide Aguda , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Ratones Endogámicos NOD , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteostasis , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Nat Cell Biol ; 26(6): 946-961, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38745030

RESUMEN

RNA-binding proteins (RBPs) are pivotal in acute myeloid leukaemia (AML), a lethal disease. Although specific phase separation-competent RBPs are recognized in AML, the effect of their condensate formation on AML leukaemogenesis, and the therapeutic potential of inhibition of phase separation are underexplored. In our in vivo CRISPR RBP screen, fibrillarin (FBL) emerges as a crucial nucleolar protein that regulates AML cell survival, primarily through its phase separation domains rather than methyltransferase or acetylation domains. These phase separation domains, with specific features, coordinately drive nucleoli formation and early processing of pre-rRNA (including efflux, cleavage and methylation), eventually enhancing the translation of oncogenes such as MYC. Targeting the phase separation capability of FBL with CGX-635 leads to elimination of AML cells, suggesting an additional mechanism of action for CGX-635 that complements its established therapeutic effects. We highlight the potential of PS modulation of critical proteins as a possible therapeutic strategy for AML.


Asunto(s)
Proteínas Cromosómicas no Histona , Leucemia Mieloide Aguda , Precursores del ARN , Procesamiento Postranscripcional del ARN , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Precursores del ARN/metabolismo , Precursores del ARN/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Animales , Línea Celular Tumoral , Biosíntesis de Proteínas , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , Ratones , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Regulación Leucémica de la Expresión Génica , Separación de Fases
7.
J Colloid Interface Sci ; 668: 551-564, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691964

RESUMEN

To reveal the mechanism of charge transfer between interfaces of BiVO4-based heterogeneous materials in photoelectrochemical water splitting system, the cocatalyst was grown in situ using tannic acid (TA) as a ligand and Fe and Co ions as metal centers (TAFC), and then uniformly and ultra-thinly coated on BiVO4 to form photoanodes. The results show that the BiVO4/TAFC achieves a superior photocurrent density (4.97 mA cm-2 at 1.23 VRHE). The charge separation and charge injection efficiencies were also significantly higher, 82.0 % and 78.9 %, respectively. From XPS, UPS, KPFM, and density functional theory calculations, Ligand-to-metal charge transfer (LMCT) acts as an electron transport highway in TAFC ultrathin layer to promote the concentration of electrons towards metal center, leading to an increase in the work function, which enhances the built-in electric field and further improves the charge transport. This study demonstrated that the LMCT pathway on TA-metal complexes enhances the built-in electric field in BiVO4/TAFC to promote charge transport and thus enhance water oxidation, providing a new understanding of the performance improvement mechanism for the surface-modified composite photoanodes.

8.
Cell Rep ; 43(4): 114065, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38578828

RESUMEN

Epigenetic modification shapes differentiation trajectory and regulates the exhaustion state of chimeric antigen receptor T (CAR-T) cells. Limited efficacy induced by terminal exhaustion closely ties with intrinsic transcriptional regulation. However, the comprehensive regulatory mechanisms remain largely elusive. Here, we identify class I histone deacetylase inhibitors (HDACi) as boosters of CAR-T cell function by high-throughput screening of chromatin-modifying drugs, in which M344 and chidamide enhance memory maintenance and resistance to exhaustion of CAR-T cells that induce sustained antitumor efficacy both in vitro and in vivo. Mechanistically, HDACi decrease HDAC1 expression and enhance H3K27ac activity. Multi-omics analyses from RNA-seq, ATAC-seq, and H3K27ac CUT&Tag-seq show that HDACi upregulate expression of TCF4, LEF1, and CTNNB1, which subsequently activate the canonical Wnt/ß-catenin pathway. Collectively, our findings elucidate the functional roles of class I HDACi in enhancing CAR-T cell function, which provides the basis and therapeutic targets for synergic combination of CAR-T cell therapy and HDACi treatment.


Asunto(s)
Aminopiridinas , Inhibidores de Histona Desacetilasas , Vía de Señalización Wnt , Inhibidores de Histona Desacetilasas/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Animales , Humanos , Ratones , Benzamidas/farmacología , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Linfocitos T/inmunología , Histona Desacetilasa 1/metabolismo
9.
J Colloid Interface Sci ; 665: 977-987, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38574586

RESUMEN

The photoelectrochemical (PEC) performance ofBiVO4 is limited by sluggish water oxidation kinetics and severe carrier recombination. Herein, a novel high-performance BiVO4/NiFe-NOAQ photoanode is prepared by a simple one-step hydrothermal method, using BiVO4 and 1-Nitroanthraquinone (NOAQ) as raw materials. The BiVO4/NiFe-NOAQ photoanode has an excellent photocurrent density of 5.675 mA cm-2 at 1.23 VRHE, which is 3.35 times higher than that of the pure BiVO4 (1.693 mA cm-2) photoanode. The BiVO4/NiFe-NOAQ shows a significant improvement in charge separation efficiency (86.12 %) and charge injection efficiency (87.86 %). The improvement is ascribable to the NiFe-NOAQ form a type II heterojunction with BiVO4 to inhibit carrier recombination. More importantly, the kinetic isotope experiment suggests that the proton-coupled electron transfer (PCET) process can enhance the charge transfer of BiVO4/NiFe-NOAQ. The contact angle measurements show that modifying functional groups enhanced the hydrophilicity of BiVO4/NiFe-NOAQ, which can further accelerate the PCET process. The XPS and PL results as well as the tauc plot indicate that the strong electron-withdrawing ability of -NO2 which can promote the extension of π conjugation, results in more π electron delocalization and produces more efficient active sites, thus achieving efficient photoelectrochemical water oxidation.

10.
J Colloid Interface Sci ; 664: 500-510, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484518

RESUMEN

The efficiency of CO2 photocatalytic reduction is severely limited by inefficient separation and sluggish transfer. In this study, spin polarization was induced and built-in electric field was strengthened via Co doping in the BiVO4 cell to boost photocatalytic CO2 reduction. Results showed that owing to the generation of spin-polarized electrons upon Co doping, carrier separation and photocurrent production of the Co-doped BiVO4 were enhanced. CO production during CO2 photocatalytic reduction from the Co-BiVO4 was 61.6 times of the BiVO4. Notably, application of an external magnetic field (100 mT) further boosted photocatalytic CO2 reduction from the Co-BiVO4, with 68.25 folds improvement of CO production compared to pristine BiVO4. The existence of a built-in electric field (IEF) was demonstrated through density functional theory (DFT) simulations and kelvin probe force microscopy (KPFM). Mechanism insights could be elucidated as follows: doping of magnetic Co into the BiVO4 resulted in increased the number of spin-polarized photo-excited carriers, and application of a magnetic field led to an augmentation of intrinsic electric field due to a dipole shift, thereby extending carrier lifetime and suppressing charges recombination. Additionally, HCOO- was a crucial intermediate in the process of CO2RR, and possible pathways for CO2 reduction were proposed. This study highlights the significance of built-in electric fields and the important role of spin polarization for promotion of photocatalytic CO2 reduction.

11.
Small ; 20(31): e2311906, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38461529

RESUMEN

The challenge of synthesizing nanocrystal photocatalysts with adjustable lattice strain for effective waste-to-energy conversion is addressed in this study. Cd0.5Zn0.5S (CZS) nanocrystals are synthesized by a simple solvothermal method, regulation of the ratio between N, N-dimethylformamide, and water solvent are shown to provoke expansion and contraction, inducing an adjustable lattice strain ranging from -1.2% to 5.6%. With the hydrolyzed wasted plastic as a sacrificial agent, the 5.6% lattice-strain CZS exhibited a robust hydrogen evolution activity of 1.09 mmol m-2 h-1 (13.83 mmol g-1 h-1), 4.5 times that of pristine CZS. Characterizations and density functional theory calculation demonstrated that lattice expansion increases the spatial distance between the valence band maximum and conduction band minimum, thus reducing carrier recombination and promoting charge transfer. Additionally, lattice expansion induces surface S vacancies and adsorbed OH groups, further enhancing redox reactions. This study focuses on the synchronous regulation of crystal structure, charge separation/transport, and surface reactions through lattice strain engineering, which providing a reference for the rational design of new photocatalysts for effective waste-to-energy conversion.

12.
Small ; 20(29): e2311916, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38344887

RESUMEN

Surface defects on photocatalysts could promote carrier separation and generate unsaturated sites for chemisorption and reactant activation. Nevertheless, the inactivation of oxygen vacancies (OVs) would deteriorate catalytic activity and limit the durability of defective materials. Herein, bagasse-derived carbon quantum dots (CQDs) are loaded on the Sn-doped Bi2O2CO3 (BOC) via hydrothermal procedure to create Bi─O─C chemical bonding at the interface, which not only provides efficient atomic-level interfacial electron channels for accelerating carriers transfer, but also enhances durability. The optimized Sn-BOC/CQDs-2 achieves the highest photocatalytic removal efficiencies for levofloxacin (LEV) (88.7%) and Cr (VI) (99.3%). The elimination efficiency for LEV and Cr (VI) from the Sn-BOC/CQDs-2 is maintained at 55.1% and 77.0% while the Sn-BOC is completely deactivated after four cycle tests. Furthermore, the key role of CQDs in stabilization of OVs is to replace OVs as the active center of H2O and O2 adsorption and activation, thereby preventing reactant molecules from occupying OVs. Based on theoretical calculations of the Fukui index and intermediates identification, three possible degradation pathways of LEV are inferred. This work provides new insight into improving the stability of defective photocatalysts.

13.
Exp Hematol Oncol ; 13(1): 12, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291542

RESUMEN

Leukemias are refractory hematological malignancies, characterized by marked intrinsic heterogeneity which poses significant obstacles to effective treatment. However, traditional bulk sequencing techniques have not been able to effectively unravel the heterogeneity among individual tumor cells. With the emergence of single-cell sequencing technology, it has bestowed upon us an unprecedented resolution to comprehend the mechanisms underlying leukemogenesis and drug resistance across various levels, including the genome, epigenome, transcriptome and proteome. Here, we provide an overview of the currently prevalent single-cell sequencing technologies and a detailed summary of single-cell studies conducted on leukemia, with a specific focus on four key aspects: (1) leukemia's clonal architecture, (2) frameworks to determine leukemia subtypes, (3) tumor microenvironment (TME) and (4) the drug-resistant mechanisms of leukemia. This review provides a comprehensive summary of current single-cell studies on leukemia and highlights the markers and mechanisms that show promising clinical implications for the diagnosis and treatment of leukemia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA