Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 625
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Plants (Basel) ; 13(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39124220

RESUMEN

Foxtail millet (Setaria italica) is an important cereal crop with rich nutritional value. Distinctness, Uniformity, and Stability (DUS) are the prerequisites for the application of new variety rights for foxtail millet. In this study, we investigated 32 DUS test characteristics of 183 foxtail millet resources, studied their artificial selection trends, and identified the varieties that conform to breeding trends. The results indicated significant differences in terms of the means, ranges, and coefficients of variation for each characteristic. A correlation analysis was performed to determine the correlations between various DUS characteristics. A principal component analysis was conducted on 31 test characteristics to determine their primary characteristics. By plotting PC1 and PC2, all the germplasm resources could be clearly distinguished. The trends in foxtail millet breeding were identified through a differential analysis of the DUS test characteristics between the landrace and cultivated varieties. Based on these breeding trends, the optimal solution types for multiple evaluation indicators were determined; the weight allocation was calculated; and a specific TOPSIS algorithm was designed to establish a comprehensive multi-criteria decision-making model. Using this model, the breeding potential of foxtail millet germplasm resources were ranked. These findings provided important reference for foxtail millet breeding in the future.

2.
Front Endocrinol (Lausanne) ; 15: 1380885, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099670

RESUMEN

Introduction: In vitro fertilization (IVF) is a technology that assists couples experiencing infertility to conceive children. However, unsuccessful attempts can lead to significant physical and financial strain. Some individuals opt for electro-acupuncture (EA) during IVF, even though there is limited evidence regarding the efficacy of this practice. Thus, this pilot study aims to explore the effectiveness and safety of EA during IVF on pregnancy outcomes. Methods and analysis: This clinical trial is a parallel, randomized, sham-controlled study. It aims to include a total of 118 infertile women who intend to undergo IVF. The participants will be randomly divided into three groups in a 1:1:1 ratio: the EA + IVF group, the placebo electro-acupuncture (pEA) +IVF group, and the IVF control group. All of the patients will be required to use ovarian stimulation drugs, while those in the EA + IVF and pEA + IVF groups will receive acupuncture treatment at three sessions per week (every other day) until trigger day with a minimum five session. The primary outcome of this trial will focus on the clinical pregnancy rate (CPR). CPR is defined as the rate of achieving clinical pregnancy from the first fresh/frozen embryo transfer cycle with an ultrasound-confirmed gestational sac in the uterine cavity. The secondary outcomes will assess embryology data, biochemical pregnancy rate, early miscarriage rate, Self-rating Anxiety Scale (SAS), Self-rating Depression Scale (SDS), Pittsburgh Sleep Quality Index (PSQI), Fertile Quality of Life (FertiQoL), patient retention rate, treatment adherence, and safety outcomes. Ethics and dissemination: Ethics approval was obtained from the Ethics Committee of Sichuan Jinxin Xi'nan Women and Children Hospital (number 2021-007). The results will be disseminated through peer-reviewed publications. The participants gave informed consent to participate in the study before taking part in it. Clinical trial registration: https://www.chictr.org.cn, identifier ChiCTR2300074455.


Asunto(s)
Electroacupuntura , Fertilización In Vitro , Resultado del Embarazo , Índice de Embarazo , Humanos , Femenino , Embarazo , Fertilización In Vitro/métodos , Electroacupuntura/métodos , Proyectos Piloto , Adulto , Infertilidad Femenina/terapia , Inducción de la Ovulación/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
3.
Biochem Biophys Res Commun ; 737: 150500, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39142135

RESUMEN

Nicotinamide Adenine Dinucleotide Phosphate (NADPH) plays a vital role in regulating redox homeostasis and reductive biosynthesis. However, if exogenous NADPH can be transported across the plasma membrane has remained elusive. In this study, we present evidence supporting that NADPH can traverse the plasma membranes of cells through a mechanism mediated by the P2X7 receptor (P2X7R). Notably, we observed an augmentation of intracellular NADPH levels in cultured microglia upon exogenous NADPH supplementation in the presence of ATP. The P2X7R-mediated transmembrane transportation of NADPH was validated with P2X7R antagonists, including OX-ATP, BBG, and A-438079, or through P2X7 knockdown, which impeded NADPH transportation into cells. Conversely, overexpression of P2X7 resulted in an enhanced capacity for NADPH transport. Furthermore, transfection of hP2X7 demonstrated the ability to complement NADPH uptake in native HEK293 cells. Our findings provide evidence for the first time that NADPH is transported across the plasma membrane via a P2X7R-mediated pathway. Additionally, we propose an innovative avenue for modulating intracellular NADPH levels. This discovery holds promise for advancing our understanding of the role of NADPH in redox homeostasis and neuroinflammation.

4.
Pulm Pharmacol Ther ; 87: 102317, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154901

RESUMEN

The established recognition of N6-methyladenosine (m6A) modification as an indispensable regulatory agent in human cancer is widely accepted. However, the understanding of m6A's role and the mechanisms underlying its contribution to gefitinib resistance is notably limited. Herein, using RT-qPCR, Western blot, Cell proliferation and apoptosis, as well as RNA m6A modification assays, we substantiated that heightened FTO (Fat Mass and Obesity-associated protein) expression substantially underpins the emergence of gefitinib resistance in NSCLC cells. This FTO-driven gefitinib resistance is hinged upon the co-occurrence of PELI3 (Pellino E3 Ubiquitin Protein Ligase Family Member 3) expression and concurrent autophagy activation. Manipulation of PELI3 expression and autophagy activation, including its attenuation, was efficacious in both inducing and overcoming gefitinib resistance within NSCLC cells, as validated in vitro and in vivo. In summary, this study has successfully elucidated the intricate interplay involving FTO-mediated m6A modification, its consequential downstream effect on PELI3, and the concurrent involvement of autophagy in fostering the emergence of gefitinib resistance within the therapeutic context of NSCLC.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39167520

RESUMEN

The daily experience of mental stress profoundly influences our health and work performance while concurrently triggering alterations in brain electrical activity. Electroencephalogram (EEG) is a widely adopted method for assessing cognitive and affective states. This study delves into the EEG correlates of stress and the potential use of resting EEG in evaluating stress levels. Over 13 weeks, our longitudinal study focuses on the real-life experiences of college students, collecting data from each of the 18 participants across multiple days in classroom settings. To tackle the complexity arising from the multitude of EEG features and the imbalance in data samples across stress levels, we use the sequential backward selection (SBS) method for feature selection and the adaptive synthetic (ADASYN) sampling algorithm for imbalanced data. Our findings unveil that delta and theta features account for approximately 50% of the selected features through the SBS process. In leave-one-out (LOO) cross-validation, the combination of band power and pair-wise coherence (COH) achieves a maximum balanced accuracy of 94.8% in stress-level detection for the above daily stress dataset. Notably, using ADASYN and borderline synthesized minority over-sampling technique (borderline-SMOTE) methods enhances model accuracy compared to the traditional SMOTE approach. These results provide valuable insights into using EEG signals for assessing stress levels in real-life scenarios, shedding light on potential strategies for managing stress more effectively.

6.
World J Gastrointest Endosc ; 16(7): 432-438, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39072250

RESUMEN

BACKGROUND: Portal vein injury is an uncommon complication of endoscopic retrograde cholangiopancreatography (ERCP), for which stent malpositioning in the portal vein is very rare and can lead to fatal events. We report a case of biliary stent migration to the portal vein and a novel method for its safe removal under the guidance of portal angiography. Moreover, we reviewed the literature and summarized reports on the identification and management of this condition. CASE SUMMARY: A 59-year-old woman with pancreatic cancer presented with abdominal pain and a high fever 20 days after the placement of two plastic biliary stents under the guidance of ERCP. Blood cultures and laboratory tests revealed sepsis, which was treated with antibiotics. A contrast-enhanced computed tomography scan revealed that one of the biliary stents in the main portal vein was malpositioned. To safely remove the stent, portal angiography was performed to visualize the portal vein and to allow the management of any bleeding. The two stents were removed without obvious bleeding, and an uncovered self-expanding metal stent was placed in the common bile duct for drainage. The patient had an uneventful 6-month follow-up period, except for self-resolving portal vein thrombosis. CONCLUSION: The combination of endoscopic and angiographic techniques allowed uneventful management of stent malposition in the portal vein.

7.
Micromachines (Basel) ; 15(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39064434

RESUMEN

Temperature can reflect vital activities, and researchers have attempted to guide Chinese medicine diagnosis and treatment by observing acupoint temperature changes. Integrating a temperature sensor at the needle tip enables in situ acupoint temperature measurement. However, the sensor needles for acupoint temperature monitoring designed in previous studies were fabricated by manually soldering thermistor beads and metal wires, making mass production difficult. In this work, using MEMS manufacturing technology, a flexible temperature sensor that can be integrated at the needle tip is proposed and can be mass-produced on silicon wafers. The sensor uses a Pt thermistor as the temperature-sensing element and has a slender flexible structure with dimensions of 125 µm width by 3.2 cm length. As the sensor is inserted into a hollow needle, the Pt thermistor is glued to the needle tip. In the temperature range of 30 °C to 50 °C, the fabricated temperature sensor has a sensitivity of 5.00 Ω∙°C-1, a nonlinearity of ±0.39%FS, and a repeatability error of ±2.62%FS. Additionally, the sensor has been applied to in vivo acupoint temperature monitoring experiments in rats and demonstrated good performance, suggesting its promise for future research on acupoint temperature.

8.
Comput Struct Biotechnol J ; 23: 2746-2753, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39050785

RESUMEN

The advent of single cell transposase-accessible chromatin sequencing (scATAC-seq) technology enables us to explore the genomic characteristics and chromatin accessibility of blood cells at the single-cell level. To fully make sense of the roles and regulatory complexities of blood cells, it is critical to collect and analyze these rapidly accumulating scATAC-seq datasets at a system level. Here, we present scBlood (https://bio.liclab.net/scBlood/), a comprehensive single-cell accessible chromatin database of blood cells. The current version of scBlood catalogs 770,907 blood cells and 452,247 non-blood cells from ∼400 high-quality scATAC-seq samples covering 30 tissues and 21 disease types. All data hosted on scBlood have undergone preprocessing from raw fastq files and multiple standards of quality control. Furthermore, we conducted comprehensive downstream analyses, including multi-sample integration analysis, cell clustering and annotation, differential chromatin accessibility analysis, functional enrichment analysis, co-accessibility analysis, gene activity score calculation, and transcription factor (TF) enrichment analysis. In summary, scBlood provides a user-friendly interface for searching, browsing, analyzing, visualizing, and downloading scATAC-seq data of interest. This platform facilitates insights into the functions and regulatory mechanisms of blood cells, as well as their involvement in blood-related diseases.

9.
BMC Microbiol ; 24(1): 273, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044145

RESUMEN

BACKGROUND: Owing to the widespread use of chemical pesticides to control agricultural pests, pesticide tolerance has become a serious problem. In recent years, it has been found that symbiotic bacteria are related to pesticides tolerance. To investigate the potential role of microorganisms in the pesticide tolerance of Chilo suppressalis, this study was conducted. RESULTS: The insect was fed with tetracycline and cefixime as the treatment group (TET and CFM, respectively), and did not add antibiotics in the control groups (CK). The 16S rDNA sequencing results showed that antibiotics reduced the diversity of C. suppressalis symbiotic microorganisms but did not affect their growth and development. In bioassays of the three C. suppressalis groups (TET, CFM, and CK), a 72 h LC50 fitting curve was calculated to determine whether long-term antibiotic feeding leads to a decrease in pesticide resistance. The CK group of C. suppressalis was used to determine the direct effect of antibiotics on pesticide tolerance using a mixture of antibiotics and pesticides. Indirect evidence suggests that antibiotics themselves did not affect the pesticide tolerance of C. suppressalis. The results confirmed that feeding C. suppressalis cefixime led to a decrease in the expression of potential tolerance genes to chlorantraniliprole. CONCLUSIONS: This study reveals the impact of antibiotic induced changes in symbiotic microorganisms on the pesticide tolerance of C. suppressalis, laying the foundation for studying the interaction between C. suppressalis and microorganisms, and also providing new ideas for the prevention and control of C. suppressalis and the creation of new pesticides.


Asunto(s)
Antibacterianos , Bacterias , Antibacterianos/farmacología , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Plaguicidas/farmacología , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/efectos de los fármacos , Simbiosis , ARN Ribosómico 16S/genética , Microbiota/efectos de los fármacos , Tetraciclina/farmacología
10.
Biomedicines ; 12(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39061954

RESUMEN

Although travelers are frequently accompanied by abdominal discomfort and even diarrhea, not every trip can cause this issue. Many studies have reported that intestinal microbes play an important role in it. However, little is known about the reason for the dynamics of these intestinal microbes. Here, we delved into the effects of short-term travel on the gut microbiota of 12 healthy individuals. A total of 72 fecal samples collected before and after one-week travel, alongside non-traveling controls, underwent amplicon sequencing and a series of bioinformatic analyses. We found that travel significantly increased intra-individual gut microbiota fluctuations without diarrhea symptoms. In addition, the initial composition of the gut microbiota before travel emerged as a crucial factor in understanding these fluctuations. Travelers with stable microbiota exhibited an enrichment of specific probiotic bacteria (Agathobaculum, Faecalibacterium, Bifidobacterium, Roseburia, Lactobacillus) before travel. Another batch of data validated their predictive role in distinguishing travelers with and without the gut microbial disorder. This work provided valuable insights into understanding the relationship between gut microbiota and travel. It offered a microbiota-centric perspective and a potential avenue for interventions to preserve gut health during travel.

11.
J Transl Med ; 22(1): 564, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872164

RESUMEN

BACKGROUND/PURPOSE(S): The gut microbiota and its metabolites play crucial roles in pathogenesis of arthritis, highlighting gut microbiota as a promising avenue for modulating autoimmunity. However, the characterization of the gut virome in arthritis patients, including osteoarthritis (OA) and gouty arthritis (GA), requires further investigation. METHODS: We employed virus-like particle (VLP)-based metagenomic sequencing to analyze gut viral community in 20 OA patients, 26 GA patients, and 31 healthy controls, encompassing a total of 77 fecal samples. RESULTS: Our analysis generated 6819 vOTUs, with a considerable proportion of viral genomes differing from existing catalogs. The gut virome in OA and GA patients differed significantly from healthy controls, showing variations in diversity and viral family abundances. We identified 157 OA-associated and 94 GA-associated vOTUs, achieving high accuracy in patient-control discrimination with random forest models. OA-associated viruses were predicted to infect pro-inflammatory bacteria or bacteria associated with immunoglobulin A production, while GA-associated viruses were linked to Bacteroidaceae or Lachnospiraceae phages. Furthermore, several viral functional orthologs displayed significant differences in frequency between OA-enriched and GA-enriched vOTUs, suggesting potential functional roles of these viruses. Additionally, we trained classification models based on gut viral signatures to effectively discriminate OA or GA patients from healthy controls, yielding AUC values up to 0.97, indicating the clinical utility of the gut virome in diagnosing OA or GA. CONCLUSION: Our study highlights distinctive alterations in viral diversity and taxonomy within gut virome of OA and GA patients, offering insights into arthritis etiology and potential treatment and prevention strategies.


Asunto(s)
Artritis Gotosa , Microbioma Gastrointestinal , Osteoartritis , Viroma , Humanos , Artritis Gotosa/virología , Artritis Gotosa/microbiología , Masculino , Osteoartritis/virología , Osteoartritis/microbiología , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Anciano , Metagenómica , Heces/virología , Heces/microbiología
12.
Imeta ; 3(3): e199, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898986

RESUMEN

The drug response phenotype is determined by a combination of genetic and environmental factors. The high clinical conversion failure rate of gene-targeted drugs might be attributed to the lack of emphasis on environmental factors and the inherent individual variability in drug response (IVDR). Current evidence suggests that environmental variables, rather than the disease itself, are the primary determinants of both gut microbiota composition and drug metabolism. Additionally, individual differences in gut microbiota create a unique metabolic environment that influences the in vivo processes underlying drug absorption, distribution, metabolism, and excretion (ADME). Here, we discuss how gut microbiota, shaped by both genetic and environmental factors, affects the host's ADME microenvironment within a new evaluation system for drug-microbiota interactions. Furthermore, we propose a new top-down research approach to investigate the intricate nature of drug-microbiota interactions in vivo. This approach utilizes germ-free animal models, providing foundation for the development of a new evaluation system for drug-microbiota interactions.

13.
Front Psychol ; 15: 1281207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38899122

RESUMEN

Anthropomorphism, the attribution of human-like qualities (e.g., mental states) to nonhuman entities, is a universal but variable psychological experience. Adults with professionally diagnosed autism or high levels of subclinical autistic traits consistently show greater tendencies to anthropomorphize, which has been hypothesized to reflect 1) a compensatory mechanism for lack of social connectedness and 2) a persistence of childhood anthropomorphism into adulthood. Here, we directly tested these hypotheses in a general population sample consisting of both adults (N=685, 17-58 years old) and early adolescents (N=145, 12-14 years old) using the refined 9-item Anthropomorphism Questionnaire (AnthQ9), which measures both present and childhood anthropomorphic tendencies. We found that adults with heightened autistic traits reported increased present anthropomorphism (e.g., tend more to perceive computers as having minds), which held even after controlling for social connectedness. In contrast, adolescents with heightened autistic traits did not show increased present anthropomorphism, but rather reported reduced childhood anthropomorphism (e.g., less likely to perceive toys as having feelings) after controlling for social connectedness. We also found evidence that the present and childhood subscales of the AnthQ9 may tap into fundamentally different aspects of anthropomorphism. The results suggest that increased anthropomorphic tendencies in adults with heightened autistic traits cannot be explained solely by increased sociality motivation, but may be due to delayed development of anthropomorphism, although alternative possibilities of measurement problems cannot be ruled out. Implications for the measurement of anthropomorphism and its relation with theory of mind were also discussed.

14.
Acta Pharmacol Sin ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902503

RESUMEN

Identification of compounds to modulate NADPH metabolism is crucial for understanding complex diseases and developing effective therapies. However, the complex nature of NADPH metabolism poses challenges in achieving this goal. In this study, we proposed a novel strategy named NADPHnet to predict key proteins and drug-target interactions related to NADPH metabolism via network-based methods. Different from traditional approaches only focusing on one single protein, NADPHnet could screen compounds to modulate NADPH metabolism from a comprehensive view. Specifically, NADPHnet identified key proteins involved in regulation of NADPH metabolism using network-based methods, and characterized the impact of natural products on NADPH metabolism using a combined score, NADPH-Score. NADPHnet demonstrated a broader applicability domain and improved accuracy in the external validation set. This approach was further employed along with molecular docking to identify 27 compounds from a natural product library, 6 of which exhibited concentration-dependent changes of cellular NADPH level within 100 µM, with Oxyberberine showing promising effects even at 10 µM. Mechanistic and pathological analyses of Oxyberberine suggest potential novel mechanisms to affect diabetes and cancer. Overall, NADPHnet offers a promising method for prediction of NADPH metabolism modulation and advances drug discovery for complex diseases.

15.
Nano Lett ; 24(20): 5958-5967, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38738749

RESUMEN

Micro/nanorobots hold the potential to revolutionize biomedicine by executing diverse tasks in hard-to-reach biological environments. Nevertheless, achieving precise drug delivery to unknown disease sites using swarming micro/nanorobots remains a significant challenge. Here we develop a heterogeneous swarm comprising sensing microrobots (sensor-bots) and drug-carrying microrobots (carrier-bots) with collaborative tasking capabilities for precise drug delivery toward unknown sites. Leveraging robust interspecific hydrodynamic interactions, the sensor-bots and carrier-bots spontaneously synchronize and self-organize into stable heterogeneous microswarms. Given that the sensor-bots can create real-time pH maps employing pH-responsive structural-color changes and the doxorubicin-loaded carrier-bots exhibit selective adhesion to acidic targets via pH-responsive charge reversal, the sensor-carrier microswarm, when exploring unknown environments, can detect and localize uncharted acidic targets, guide itself to cover the area, and finally deploy therapeutic carrier-bots precisely there. This versatile platform holds promise for treating diseases with localized acidosis and inspires future theranostic microsystems with expandability, task flexibility, and high efficiency.


Asunto(s)
Doxorrubicina , Sistemas de Liberación de Medicamentos , Doxorrubicina/química , Doxorrubicina/farmacología , Concentración de Iones de Hidrógeno , Acidosis , Humanos , Portadores de Fármacos/química , Robótica
16.
World J Gastrointest Surg ; 16(5): 1301-1310, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38817303

RESUMEN

BACKGROUND: Transjugular intrahepatic portosystemic shunt (TIPS) is a cause of acute-on-chronic liver failure (ACLF). AIM: To investigate the risk factors of ACLF within 1 year after TIPS in patients with cirrhosis and construct a prediction model. METHODS: In total, 379 patients with decompensated cirrhosis treated with TIPS at Nanjing Drum Tower Hospital from 2017 to 2020 were selected as the training cohort, and 123 patients from Nanfang Hospital were included in the external validation cohort. Univariate and multivariate logistic regression analyses were performed to identify independent predictors. The prediction model was established based on the Akaike information criterion. Internal and external validation were conducted to assess the performance of the model. RESULTS: Age and total bilirubin (TBil) were independent risk factors for the incidence of ACLF within 1 year after TIPS. We developed a prediction model comprising age, TBil, and serum sodium, which demonstrated good discrimination and calibration in both the training cohort and the external validation cohort. CONCLUSION: Age and TBil are independent risk factors for the incidence of ACLF within 1 year after TIPS in patients with decompensated cirrhosis. Our model showed satisfying predictive value.

17.
World J Stem Cells ; 16(4): 353-374, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38690515

RESUMEN

Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection typically presents with fever and respiratory symptoms, which can progress to severe respiratory distress syndrome and multiple organ failure. In severe cases, these complications may even lead to death. One of the causes of COVID-19 deaths is the cytokine storm caused by an overactive immune response. Therefore, suppressing the overactive immune response may be an effective strategy for treating COVID-19. Mesenchymal stem cells (MSCs) and their derived exosomes (MSCs-Exo) have potent homing abilities, immunomodulatory functions, regenerative repair, and antifibrotic effects, promising an effective tool in treating COVID-19. In this paper, we review the main mechanisms and potential roles of MSCs and MSCs-Exo in treating COVID-19. We also summarize relevant recent clinical trials, including the source of cells, the dosage and the efficacy, and the clinical value and problems in this field, providing more theoretical references for the clinical use of MSCs and MSCs-Exo in the treatment of COVID-19.

18.
J Exp Clin Cancer Res ; 43(1): 114, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627815

RESUMEN

BACKGROUND: The efficacy of anti-PD-1 therapy is primarily hindered by the limited T-cell immune response rate and immune evasion capacity of tumor cells. Autophagy-related protein 7 (ATG7) plays an important role in autophagy and it has been linked to cancer. However, the role of ATG7 in the effect of immune checkpoint blockade (ICB) treatment on high microsatellite instability (MSI-H)/mismatch repair deficiency (dMMR) CRC is still poorly understood. METHODS: In this study, patients from the cancer genome altas (TCGA) COAD/READ cohorts were used to investigate the biological mechanism driving ATG7 development. Several assays were conducted including the colony formation, cell viability, qRT-PCR, western blot, immunofluorescence, flow cytometry, ELISA, immunohistochemistry staining and in vivo tumorigenicity tests. RESULTS: We found that ATG7 plays a crucial role in MSI-H CRC. Its knockdown decreased tumor growth and caused an infiltration of CD8+ T effector cells in vivo. ATG7 inhibition restored surface major histocompatibility complex I (MHC-I) levels, causing improved antigen presentation and anti-tumor T cell response by activating reactive oxygen species (ROS)/NF-κB pathway. Meanwhile, ATG7 inhibition also suppressed cholesterol accumulation and augmentation of anti-tumor immune responses. Combining ATG7 inhibition and statins improved the therapeutic benefit of anti-PD-1 in MSI-H CRC. Importantly, CRC patients with high expression of both ATG7 and recombinant 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) experienced worse prognosis compared to those with low ATG7 and HMGCR expression. CONCLUSIONS: Inhibition of ATG7 leads to upregulation of MHC-I expression, augments immune response and suppresses cholesterol accumulation. These findings demonstrate that ATG7 inhibition has therapeutic potential and application of statins can increase the sensitivity to immune checkpoint inhibitors.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Síndromes Neoplásicos Hereditarios , Humanos , Proteína 7 Relacionada con la Autofagia/genética , Colesterol , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Reparación de la Incompatibilidad de ADN , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad , Inestabilidad de Microsatélites
19.
Parasit Vectors ; 17(1): 185, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600604

RESUMEN

Schistosomiasis, also called bilharziasis, is a neglected tropical disease induced by schistosomes that infects hundreds of millions of people worldwide. In the life cycle of schistosomiasis, eggs are regarded as the main pathogenic factor, causing granuloma formation in the tissues and organs of hosts, which can cause severe gastrointestinal and liver granulomatous immune responses and irreversible fibrosis. Increasing evidence suggests that the gut microbiome influences the progression of schistosomiasis and plays a central role in liver disease via the gut-liver axis. When used as pharmaceutical supplements or adjunctive therapy, probiotics have shown promising results in preventing, mitigating, and even treating schistosomiasis. This review elucidates the potential mechanisms of this three-way parasite-host-microbiome interaction by summarizing schistosome-mediated intestinal flora disorders, local immune changes, and host metabolic changes, and elaborates the important role of the gut microbiome in liver disease after schistosome infection through the gut-liver axis. Understanding the mechanisms behind this interaction may aid in the discovery of probiotics as novel therapeutic targets and sustainable control strategies for schistosomiasis.


Asunto(s)
Hepatopatías , Esquistosomiasis , Animales , Humanos , Schistosoma/fisiología , Esquistosomiasis/patología
20.
Bioorg Chem ; 147: 107325, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583247

RESUMEN

Dual suppression of oxidative phosphorylation (OXPHOS) and glycolysis can disrupt metabolic adaption of cancer cells, inhibiting energy supply and leading to successful cancer therapy. Herein, we have developed an α-tocopheryl succinate (α-TOS)-functionalized iridium(III) complex Ir2, a highly lipophilic mitochondria targeting anticancer molecule, could inhibit both oxidative phosphorylation (OXPHOS) and glycolysis, resulting in the energy blockage and cancer growth suppression. Mechanistic studies reveal that complex Ir2 induces reactive oxygen species (ROS) elevation and mitochondrial depolarization, and triggers DNA oxidative damage. These damages could evoke the cancer cell death with the mitochondrial-relevant apoptosis and autophagy. 3D tumor spheroids experiment demonstrates that Ir2 owned superior antiproliferation performance, as the potent anticancer agent in vivo. This study not only provided a new path for dual inhibition of both mitochondrial OXPHOS and glycolytic metabolisms with a novel α-TOS-functionalized metallodrug, but also further demonstrated that the mitochondrial-relevant therapy could be effective in enhancing the anticancer performance.


Asunto(s)
Antineoplásicos , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Glucólisis , Fosforilación Oxidativa , Humanos , Fosforilación Oxidativa/efectos de los fármacos , Glucólisis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Animales , Iridio/química , Iridio/farmacología , Relación Estructura-Actividad , Especies Reactivas de Oxígeno/metabolismo , Relación Dosis-Respuesta a Droga , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Ratones Endogámicos BALB C , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA