Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eye (Lond) ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997503

RESUMEN

BACKGROUND: To assess the changes in the posterior corneal surface following small incision lenticule extraction (SMILE) with different optical zones. METHODS: In this retrospective study, 106 eyes of 106 patients who underwent SMILE were recruited 3 years after the procedure. Eyes were divided into two groups according to the size of the surgical optical zone: group A (52 eyes, ≤6.2 mm) and group B (54 eyes, ≥6.5 mm). Posterior central elevation (PCE) and 12 other points at 45°, 135°, 225° and 315° with distances of 1 mm, 2 mm and 3 mm from the centre were recorded from Pentacam. RESULTS: No iatrogenic keratectasia was identified, and eyes in the two groups showed comparable visual results. The overall trend in posterior corneal elevation changes was consistent for both groups. PCE decreased significantly from 1.33 ± 2.32 to 0.75 ± 2.41 in group A (P = 0.024) and from 0.87 ± 2.61 to 0.06 ± 2.74 in group B (P = 0.003). All points in the central 2 mm region in both groups were reduced postoperatively. In the 4 mm and 6 mm corneal annulus, almost all points at 225°and 315° showed backward displacement, with the most prominent change occurring at 315° in the 6 mm annulus (P < 0.001), indicating no forward protrusion in the inferior area. CONCLUSIONS: No forward protrusion in the posterior corneal surface was observed 3 years after SMILE with different optical zones. Comprehensive preoperative measurements are essential for ensuring corneal stability and avoiding iatrogenic keratectasia.

2.
Redox Biol ; 75: 103260, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38955114

RESUMEN

Tumor metabolic reprogramming requires high levels of adenosine triphosphate (ATP) to maintain treatment resistance, which poses major challenges to chemotherapy and photothermal therapy. Especially, high levels of ATP promote copper ion efflux for limiting the curative effect of cuproptosis. Here, an H2S-responsive mesoporous Cu2Cl(OH)3-loading chemotherapeutic cisplatin (CDDP) was synthesized, and the final nanoparticle, CDDP@Cu2Cl(OH)3-CDs (CDCuCDs), was encapsulated by electrostatic action with carbon dots (CDs). CDCuCDs reacted with overproduction H2S in colon tumor to produce photothermic copper sulfide for photothermal therapy. CDDP was released by lysis to achieve chemotherapeutic effects. Importantly, CDDP elevated H2O2 levels in cells through a cascade reaction and continuously transforms H2O2 into highly cytotoxic •OH through chemodynamic therapy between H2O2 and Cu+, which enables nanoparticles to generate •OH and improve the chemotherapeutic efficacy. Highly toxic •OH disrupts mitochondrial homeostasis, prohibiting it from performing normal energy-supplying functions. Down-regulated ATP inhibits heat shock protein expression, which promotes the therapeutic effect of mild photothermal therapy and reduces the efflux of intracellular copper ions, thus improving the therapeutic effect of cuproptosis. Our research provides a potential therapeutic strategy using overproduction H2S responses in tumors, allowing tumor microenvironment-activated •OH nanogenerators to promote tumor energy remodeling for cancer treatment.

3.
J Control Release ; 372: 386-402, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38909699

RESUMEN

Ferroptosis-related tumor therapy based on nanomedicines has recently gained significant attention. However, the therapeutic performance is still hindered by the tumor's physical barriers such as the fibrotic tumor matrix and elevated interstitial fluid pressure, as well as chemical barriers like glutathione (GSH) overabundance. These physicochemical barriers impede the bioavailability of nanomedicines and compromise the therapeutic efficacy of lipid reactive oxygen species (ROS). Thus, this study pioneers a manganese-mediated overcoming of physicochemical barriers in the tumor microenvironment using organosilica-based nanomedicine (MMONs), which bolsters the synergy of photothermal-ferroptosis treatment. The MMONs display commendable proficiency in overcoming tumor physical barriers, due to their MnO2-mediated shape-morphing and softness-transformation ability, which facilitates augmented cellular internalization, enhanced tumor accumulation, and superior drug penetration. Also, the MMONs possess excellent capability in chemical barrier overcoming, including MnO2-mediated dual GSH clearance and enhanced ROS generation, which facilitates ferroptosis and heat shock protein inhibition. Notably, the resulting integration of physical and chemical barrier overcoming leads to amplified photothermal-ferroptosis synergistic tumor therapy both in vitro and in vivo. Accordingly, the comparative proteomic analysis has identified promoted ferroptosis with a transient inhibitory response observed in the mitochondria. This research aims to improve treatment strategies to better fight the complex defenses of tumors.

4.
J Control Release ; 371: 470-483, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38849094

RESUMEN

Hypoimmunogenicity and the immunosuppressive microenvironment of ovarian cancer severely restrict the capability of immune-mediated tumor killing. Immunogenic cell death (ICD) introduces a theoretical principle for antitumor immunity by increasing antigen exposure and presentation. Despite recent research progress, the currently available ICD inducers are still very limited, and many of them can hardly induce sufficient ICD based on traditional endoplasmic reticulum (ER) stress. Accumulating evidence indicates that inducing mitochondrial stress usually shows a higher efficiency in evoking large-scale ICD than that via ER stress. Inspired by this, herein, a mitochondria-targeted polyprodrug nanoparticle (named Mito-CMPN) serves as a much superior ICD inducer, effectively inducing chemo-photodynamic therapy-caused mitochondrial stress in tumor cells. The rationally designed stimuli-responsive polyprodrugs, which can self-assemble into nanoparticles, were functionalized with rhodamine B for mitochondrial targeting, cisplatin and mitoxantrone (MTO) for synergistic chemo-immunotherapy, and MTO also serves as a photosensitizer for photodynamic immunotherapy. The effectiveness and robustness of Mito-CMPNs in reversing the immunosuppressive microenvironment is verified in both an ovarian cancer subcutaneous model and a high-grade serous ovarian cancer model. Our results support that the induction of abundant ICD by focused mitochondrial stress is a highly effective strategy to improve the therapeutic efficacy of immunosuppressive ovarian cancer.


Asunto(s)
Antineoplásicos , Mitocondrias , Nanopartículas , Neoplasias Ováricas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/terapia , Mitocondrias/efectos de los fármacos , Fotoquimioterapia/métodos , Animales , Humanos , Línea Celular Tumoral , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Profármacos/administración & dosificación , Profármacos/uso terapéutico , Profármacos/farmacología , Muerte Celular Inmunogénica/efectos de los fármacos , Ratones Endogámicos BALB C , Cisplatino/farmacología , Cisplatino/administración & dosificación , Cisplatino/uso terapéutico , Inmunoterapia/métodos , Microambiente Tumoral/efectos de los fármacos
5.
Adv Mater ; : e2402929, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847976

RESUMEN

Radiotherapy (RT) is a crucial clinical modality for cancer. However, nonselectivity, toxicity to normal tissues, and radio-resistance severely limit RT applications. This study develops a versatile X-ray theranostic nano-antioxidant (XTN) to prevent normal tissues from oxidative damage and induce systematic and robust anticancer immunity. XTN owns NIR-II photoacoustic (PA) imaging properties for precise discrimination of the tumor margin through, thereby improving the accuracy of RT. Additionally, XTN is a nano-antioxidant to enhance the cell viability of normal cells after irradiation. Most importantly, XTN scavenges reactive oxygen species (ROS) in the TME to preserve the stimulatory activity of released high mobility group protein B1 to dendritic cells (DCs) and recover T cells' immune function. Meanwhile, XTN achieves charge-reversal specifically releasing an immunomodulator (demethylcantharidin, DMC) in the acidic TME. Moreover, the specifically released DMC inhibits protein phosphatase-2A activity and reduces regulatory T cell (Treg) differentiation. In the bilateral 4T1 tumor model, XTN-mediated radioimmunotherapy remarkably boosts a systemic antitumor immune response and induces durable immunological memory against tumor growth.

6.
ACS Med Chem Lett ; 15(6): 938-944, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38894920

RESUMEN

Many malignant tumors, including breast cancer, exhibit amplification and overexpression of cyclin-dependent kinase 4 and 6 (CDK4/6). Ribociclib, approved and used in clinical treatment, acts as a highly selective CDK4/6 inhibitor for ER+/HER2- breast cancer. By modifying ribociclib with the chelator DOTA, we designed and synthesized a novel CDK4/6-positive PET imaging agent, which was radiolabeled by 68Ga for radioactive tagging. The radiotracer demonstrates high radiochemical purity, excellent stability in vitro and in vivo, and favorable pharmacokinetic characteristics. Cell uptake experiments using MCF-7 cells indicate that an excess of ribociclib (RBB) can inhibit cellular uptake of 68Ga-DOTA-RBB. Imaging and biodistribution experiments in MCF-7 tumor-bearing nude mice show significant radioactive accumulation in the tumor. However, preadministration of excess ribociclib results in a substantial reduction in radioactive accumulation within the tumor. On the basis of our explorations, 68Ga-DOTA-RBB, as a targeted imaging agent for CDK4/6-positive tumors, holds significant potential application values.

7.
Eur J Pharm Sci ; 198: 106793, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38740076

RESUMEN

The revolutionary Proteolysis Targeting Chimera (PROTACs) have the exciting potential to reshape the pharmaceutical industry landscape by leveraging the ubiquitin-proteasome system for targeted protein degradation. Breast cancer, the most prevalent cancer in women, could be treated using PROTAC therapy. Although substantial work has been conducted, there is not yet a comprehensive overview or progress update on PROTAC therapy for breast cancer. Hence, in this article, we've compiled recent research progress focusing on different breast cancer target proteins, such as estrogen receptor (ER), BET, CDK, HER2, PARP, EZH2, etc. This resource aims to serve as a guide for future PROTAC-based breast cancer treatment design.


Asunto(s)
Neoplasias de la Mama , Proteolisis , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Femenino , Proteolisis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo
8.
J Control Release ; 370: 677-690, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740093

RESUMEN

The low oxidation level and immunosuppressive microenvironment within hypoxic tumor tissue are critical factors contributing to the inefficacy of various anti-tumor strategies. Herein, we have designed a novel intravenous injection nanoplatform to conduct electro-immunotherapy, based on phospholipid-modified PtPd nanocrystals loaded with the immunoregulator IPI549 (LP@Pt-Pd@IPI549 nanoparticles, LPPI). LPPI responds to reactive oxygen species (ROS), triggering a cascade of therapeutic effects that overcome hypoxia-related resistance and effectively eradicate hypoxic tumors. Firstly, under electric field exposure, LPPI relied on water rather than oxygen to generate abundant ROS under hypoxic conditions for tumor electrodynamic therapy (EDT). Moreover, the generated ROS further induced the disintegration of the outer phospholipid membrane of LPPI, leading to the release of the immunoregulator and inhibition of myeloid-derived suppressor cells (MDSCs), triggering cascade immune responses. Additionally, the immunomodulatory effects of IPI549, in synergy with the immunogenic cell death (ICD) induced by EDT, reversed the immunosuppressive microenvironment contributing to tumor resistance. In summary, EDT transiently killed tumor cells while simultaneously generating antigen release, instigating an adaptive immune response for electro-immunotherapy, resulting in a potent and long-lasting tumor inhibition effect.


Asunto(s)
Inmunoterapia , Especies Reactivas de Oxígeno , Animales , Especies Reactivas de Oxígeno/metabolismo , Inmunoterapia/métodos , Línea Celular Tumoral , Humanos , Microambiente Tumoral/efectos de los fármacos , Nanopartículas/administración & dosificación , Nanopartículas/química , Ratones Endogámicos C57BL , Platino (Metal)/química , Ratones , Femenino , Neoplasias/terapia , Neoplasias/inmunología , Oxígeno/administración & dosificación , Paladio/química , Paladio/administración & dosificación , Ratones Endogámicos BALB C , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Fosfolípidos/química , Fosfolípidos/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química
9.
Environ Sci Technol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696305

RESUMEN

Identifying causative toxicants in mixtures is critical, but this task is challenging when mixtures contain multiple chemical classes. Effect-based methods are used to complement chemical analyses to identify toxicants, yet conventional bioassays typically rely on an apical and/or single endpoint, providing limited diagnostic potential to guide chemical prioritization. We proposed an event-driven taxonomy framework for mixture risk assessment that relied on high-throughput screening bioassays and toxicant identification integrated by deep learning. In this work, the framework was evaluated using chemical mixtures in sediments eliciting aryl-hydrocarbon receptor activation and oxidative stress response. Mixture prediction using target analysis explained <10% of observed sediment bioactivity. To identify additional contaminants, two deep learning models were developed to predict fingerprints of a pool of bioactive substances (event driver fingerprint, EDFP) and convert these candidates to MS-readable information (event driver ion, EDION) for nontarget analysis. Two libraries with 121 and 118 fingerprints were established, and 247 bioactive compounds were identified at confidence level 2 or 3 in sediment extract using GC-qToF-MS. Among them, 12 toxicants were analytically confirmed using reference standards. Collectively, we present a "bioactivity-signature-toxicant" strategy to deconvolute mixtures and to connect patchy data sets and guide nontarget analysis for diverse chemicals that elicit the same bioactivity.

10.
J Nanobiotechnology ; 22(1): 205, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658965

RESUMEN

The elevated level of hydrogen sulfide (H2S) in colon cancer hinders complete cure with a single therapy. However, excessive H2S also offers a treatment target. A multifunctional cascade bioreactor based on the H2S-responsive mesoporous Cu2Cl(OH)3-loaded hypoxic prodrug tirapazamine (TPZ), in which the outer layer was coated with hyaluronic acid (HA) to form TPZ@Cu2Cl(OH)3-HA (TCuH) nanoparticles (NPs), demonstrated a synergistic antitumor effect through combining the H2S-driven cuproptosis and mild photothermal therapy. The HA coating endowed the NPs with targeting delivery to enhance drug accumulation in the tumor tissue. The presence of both the high level of H2S and the near-infrared II (NIR II) irradiation achieved the in situ generation of photothermic agent copper sulfide (Cu9S8) from the TCuH, followed with the release of TPZ. The depletion of H2S stimulated consumption of oxygen, resulting in hypoxic state and mitochondrial reprogramming. The hypoxic state activated prodrug TPZ to activated TPZ (TPZ-ed) for chemotherapy in turn. Furthermore, the exacerbated hypoxia inhibited the synthesis of adenosine triphosphate, decreasing expression of heat shock proteins and subsequently improving the photothermal therapy. The enriched Cu2+ induced not only cuproptosis by promoting lipoacylated dihydrolipoamide S-acetyltransferase (DLAT) heteromerization but also performed chemodynamic therapy though catalyzing H2O2 to produce highly toxic hydroxyl radicals ·OH. Therefore, the nanoparticles TCuH offer a versatile platform to exert copper-related synergistic antitumor therapy.


Asunto(s)
Cobre , Ácido Hialurónico , Sulfuro de Hidrógeno , Mitocondrias , Nanopartículas , Terapia Fototérmica , Profármacos , Tirapazamina , Terapia Fototérmica/métodos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Animales , Cobre/química , Cobre/farmacología , Ratones , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Profármacos/farmacología , Profármacos/química , Tirapazamina/farmacología , Tirapazamina/química , Nanopartículas/química , Ácido Hialurónico/química , Línea Celular Tumoral , Neoplasias del Colon/terapia , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones Desnudos
11.
Environ Sci Technol ; 58(19): 8149-8160, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38652896

RESUMEN

Environmental impacts associated with shale gas exploitation have been historically underestimated due to neglecting to account for the production or the release of end-of-pipe organic pollutants. Here, we assessed the environmental impacts of shale gas production in China and the United States using life cycle assessment. Through data mining, we compiled literature information on organic pollutants in flowback and produced water (FPW), followed by assessments using USEtox to evaluate end-of-pipe risks. Results were incorporated to reveal the life cycle risks associated with shale gas exploitation in both countries. China exhibited higher environmental impacts than the US during the production phase. Substantially different types of organic compounds were observed in the FPW between two countries. Human carcinogenic and ecological toxicity attributed to organics in FPW was 3 orders of magnitude higher than that during the production phase in the US. Conversely, in China, end-of-pipe organics accounted for approximately 52%, 1%, and 47% of the overall human carcinogenic, noncarcinogenic, and ecological impacts, respectively. This may be partially limited by the quantitative data available. While uncertainties exist associated with data availability, our study highlights the significance of integrating impacts from shale gas production to end-of-pipe pollution for comprehensive environmental risk assessments.


Asunto(s)
Gas Natural , China , Medición de Riesgo , Estados Unidos , Humanos , Monitoreo del Ambiente
12.
Biomedicines ; 12(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38540168

RESUMEN

Implantable Collamer Lens (ICL) surgery has increasingly been adopted for myopia correction in recent decades. This study, employing in vivo confocal microscopy (IVCM), aimed to assess the impact of corneal incision during ICL surgery on the corneal sub-basal nerve plexus (SNP) and adjacent immune dendritiform cells (DCs). In this longitudinal study, eyes from 53 patients undergoing ICL surgery were assessed preoperatively and postoperatively over a twelve-month period. Quantification of seven SNP parameters was performed using ACCMetrics V.2 software. Ultimately, the final analysis was restricted to one eye from each of the 37 patients who completed a minimum of three months' postoperative follow-up. Preoperative investigations revealed a positive correlation of DC density with patient age and a negative association with corneal nerve fiber density (CNFD). Additionally, both DCs and CNFD were positively linked to spherical equivalent refraction (SER) and inversely related to axial length (AL). Intriguingly, preoperative DC density demonstrated an indirect relationship with both baseline and postoperative CNFD changes. Post-surgery, an initial surge in DC density was observed, which normalized subsequently. Meanwhile, parameters like CNFD, corneal nerve fiber length (CNFL), and corneal nerve fractal dimension (CNFrD) initially showed a decline following surgery. However, at one-year follow-up, CNFL and CNFrD displayed significant recovery, while CNFD did not return to its baseline level. This study thus delineates the regeneration pattern of SNP and alterations in DC density post-ICL surgery, highlighting that CNFD in the central cornea does not completely revert to preoperative levels within a year. Given these findings, practitioners are advised to exercise caution in older patients, those with high myopia, or elevated preoperative DCs who may undergo delayed SNP regeneration.

13.
Small ; 20(28): e2309476, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38348999

RESUMEN

Complex wound repair due to tumor recurrence and infection following tumor resection presents significant clinical challenges. In this study, a bifunctional nanocomposite immune hydrogel dressing, SerMA-LJC, is developed to address the issues associated with repairing infected damaged tissues and preventing tumor recurrence. Specifically, the immune dressing is composed of methacrylic anhydride-modified sericin (SerMA) and self-assembled nanoparticles (LJC) containing lonidamine (Lon), JQ1, and chlorine e6 (Ce6). In vitro and in vivo experiments demonstrate that the nanocomposite hydrogel dressing can trigger immunogenic cell death (ICD) and has a potent anti-tumor effect. Moreover, this dressing can mitigate the acidic microenvironment of tumor cells and suppress the overexpression of PD-L1 on the tumor cell surface, thereby altering the immunosuppressive tumor microenvironment and augmenting the anti-tumor immune response. Further, the RNA sequencing analysis revealed that the hydrogel dressing significantly impacts pathways associated with positive regulation of immune response, apoptotic process, and other relevant pathways, thus triggering a potent anti-tumor immune response. More importantly, the dressing generates a substantial amount of reactive oxygen species (ROS), which can effectively kill Staphylococcus aureus and promote infectious wound healing. In conclusion, this dual-function nanocomposite immune hydrogel dressing exhibits promise in preventing tumor recurrence and promoting infectious wound healing.


Asunto(s)
Nanocompuestos , Nanocompuestos/química , Animales , Recurrencia Local de Neoplasia/prevención & control , Ratones , Hidrogeles/química , Vendajes , Melanoma/patología , Línea Celular Tumoral , Staphylococcus aureus/efectos de los fármacos , Humanos , Inyecciones , Microambiente Tumoral/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
14.
Sci Total Environ ; 920: 171065, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38373455

RESUMEN

With global warming becoming increasingly severe, environmental issues are receiving international attention. Crystalline silicon is an indispensable and important raw material for photovoltaic and semiconductor fields, but the cutting of crystalline silicon materials generates a large amount of silicon wastes. This article evaluates the environmental impact of a hydrogen production process using diamond-wire sawing silicon waste (DSSW) using the life cycle assessment (LCA) methodology. For comparison, it was also analyzed the environmental impact of the alkaline water electrolysis (AEL) hydrogen production route. In the DSSW alkaline catalyzed hydrolysis (DACH) hydrogen production route, the hydrogen production stage accounts for the main contribution of nine environmental impact indexes, including GWP, PED, ADP, AP, EP, ODP, ET, HT-cancer, and HT-non cancer, exceeding 56 %. Whereas for the AEL route, the environmental impacts of the electrolytic cell manufacturing stage can be neglected, and the operating stage contributes almost all the environmental impacts, contributing more than 92 % to the twelve environmental impact indexes. Compared to the AEL route, the DACH route has higher environmental impacts, with GWP index reaching 87.78 kg CO2 -eq/kg H2, PED index reaching 1772.90 MJ/kg H2, and IWU index reaching 622.37 kg/kg H2 which are 2.85, 4.07 and 7.56 times higher than the former, respectively. Although the environmental impact of the DACH route is significant, most of its indirect impacts were caused by the use of raw materials, and the energy consumption and direct environmental impact are both low. The environmental impact of the AEL route is mainly indirect effects generated due to the use of electricity. If clean renewable energy sources (e.g., solar PV, hydropower, geothermal or biofuels), were used for the AEL route, all twelve environmental impact indexes would be significantly reduced.

15.
Mar Pollut Bull ; 200: 116131, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38335637

RESUMEN

Polyhalogenated carbazoles (PHCZs) are a group of emerging organic pollutants attracting increasing concern. In this study, 32 sediment samples were collected from the Pearl River Estuary (PRE) and adjacent Daya Bay (DYB) in China and were investigated for the occurrence and distribution of PHCZs. Total concentration of sedimentary PHCZs (∑PHCZs) ranged from 0.79 to 3.08 ng/g in PRE and 0.89 to 1.95 ng/g in DYB, both containing 3,6-dichlorocarbazole as the main component. Higher concentrations of ∑PHCZs were found in the rivers-mouth and inner part of the PRE indicating their main origins from anthropogenic activities. Notably, concentrations of brominated carbazoles (BCZs) gradually increased offshore, which suggests the potential bio-transformation of BCZs under a saline environment. The toxic equivalent of PHCZs was estimated at 0.13-0.34 pg TEQ/g suggesting limited dioxin-like effects on local organisms.


Asunto(s)
Carbazoles , Contaminantes Químicos del Agua , Carbazoles/análisis , Ríos , Bahías , Estuarios , Contaminantes Químicos del Agua/análisis , China , Sedimentos Geológicos , Monitoreo del Ambiente
16.
J Chromatogr A ; 1715: 464627, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38171065

RESUMEN

Psychotropic medications are one of the most prescribed pharmaceuticals in the world. Given their frequent detection and ecotoxicity to the no-target organism, the emission of these medications into environments has gradually draw attention. The study developed a sensitive and reliable analytic method to simultaneously investigate 47 psychotropic medications in four matrices: wastewater, surface water, activated sludge, and sediment by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). These 47 target analytes include 24 antidepressants, 17 antianxiety drugs, 5 anticonvulsants, and 1 relevant hormone. Solid phase extraction (SPE) was employed to extract analytes from water-phase samples. Ultrasonic Solvent Extraction method with Enhanced Matrix Removal clean-up (USE-EMR) was utilized to extract target compounds from solid-phase samples, which requires more straightforward and convenient procedures than previous methods. The extraction recoveries of all analytes ranged from 80 % to 120 % in these four sample matrices. In this study, The limit of quantitation for 47 psychotropic medications were 0.15 ng/L (estazolam) to 2.27 ng/L (lorazepam), 0.08 ng/L (desvenlafaxine) to 2 ng/L (mianserin), 0.22 ng/g (dry weight, dw) (nordiazepam) to 3.65 ng/g (dw) (lorazepam), and 0.07 ng/g (dw) (carbamazepine) to 2.85 ng/g (lorazepam), in wastewater, surface water, sludge, and sediment, respectively. In addition, the developed method was employed to analyse actual samples in two wastewater treatment plants and their receiving rivers. Carbamazepine, escitalopram, clozapine, desvenlafaxine, diazepam, lamotrigine, sertraline, temazepam, and venlafaxine were nearly ubiquitous in all matrices. Moreover, this study indicated that the inadequate removal efficiencies of psychotropic medications in wastewater treatment plants (WWTPs) had resulted in a persistent discharge of these contaminants from human sources into environments.


Asunto(s)
Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua , Humanos , Espectrometría de Masas en Tándem/métodos , Aguas Residuales , Cromatografía Liquida/métodos , Aguas del Alcantarillado/química , Cromatografía Líquida con Espectrometría de Masas , Lorazepam/análisis , Succinato de Desvenlafaxina/análisis , Agua/análisis , Psicotrópicos/análisis , Extracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/análisis , Carbamazepina/análisis , Cromatografía Líquida de Alta Presión/métodos
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123885, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38245969

RESUMEN

Silver nanoparticles (AgNPs) are extensively used as an antibacterial agent, and monitoring the dissolution behavior of AgNPs in native biological environments is critical in both optimizing their performance and regulating their safety. However, current assessment methods rely on sophisticated analytical tools that are off-site and time-consuming with potential underestimations, due to complicated sample preparation. Although localized surface plasmon resonance (LSPR) sensing offers a facile method for the detection of AgNP dissolution, it is limited by low sensitivity and poor nanoparticle stability in native biological environments. Herein, we constructed a highly sensitive and stable LSPR sensor using gold-silver core-shell nanoparticles (Au@AgNPs), in combination with polymeric stabilizing agents, for the direct measurement of the Ag shell dissolution in native biological media. The high sensitivity was attributed to the acute and large LSPR shift generated by bimetallic nanoparticles. The sensor was used for the real-time monitoring of the Ag dissolution of Au@AgNPs during their co-culture with both bacteria and fibroblast cells. The media pH was found to dominate the Ag dissolution process, where Au@AgNPs exhibited bactericidal effects in the bacteria environment with relatively low pH, but they showed little toxicity towards fibroblast cells at pH 7.4. The minimum inhibition concentration of Au@AgNPs for bacterial growth was found similar to that of AgNO3 in terms of released Ag amount. Thus, stabilized Au@AgNPs not only allow the in-situ monitoring of Ag dissolution via LSPR sensing but also constitute an effective antibacterial agent with controlled toxicity, holding great potential for future biomedical and healthcare applications.


Asunto(s)
Nanopartículas del Metal , Resonancia por Plasmón de Superficie , Resonancia por Plasmón de Superficie/métodos , Plata , Antibacterianos/farmacología , Oro
18.
J Hazard Mater ; 465: 133116, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38056277

RESUMEN

Eight paired organophosphate diesters (Di-OPs) and organophosphate triesters (Tri-OPs) were investigated in wipes from analytical instruments and 47 material samples related to household products, including textiles, electrical/electronic devices, building/ decoration materials and children's products. The total concentrations of Di-OPs ranged in 3577-95551 ng/m2 in the wipes and limit of detection-23002 ng/g in the materials. The Tri-OPs concentrations varied significantly in the ranges of 107218-1756892 ng/m2 and 2.13-503149 ng/g, respectively. Four industrial Di-OPs were detected in > 65% of the studied samples suggesting their direct application in the studied materials. Furthermore, we demonstrated for the first time that four non-industrial Di-OPs, e.g., bis(2-chloroethyl) phosphate, bis(1-chloro-2-propyl) phosphate, bis(1,3-dichloro-2-propyl) phosphate, and bis(butoxyethyl) phosphate, identified as degradation products of their respective Tri-OPs were also detected in these studied samples, which might act as important emission sources of Di-OPs in indoor environments. We estimated the burden of Di-OPs and Tri-OPs in a typical residential house and instrumental room, which both exhibited important contributions from furniture, building and decoration materials, and electrical/electronic devices. Limit health risk was posed to local people via air inhalation.


Asunto(s)
Retardadores de Llama , Organofosfatos , Niño , Humanos , Retardadores de Llama/metabolismo , Fosfatos , Electrónica , Productos Domésticos , Monitoreo del Ambiente , Ésteres
19.
J Cataract Refract Surg ; 50(3): 276-282, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38031330

RESUMEN

PURPOSE: To examine the risk factors for haptic malposition in eyes with implantable collamer lens (ICL). SETTING: Eye and ENT Hospital, Fudan University, Shanghai, China. DESIGN: Prospective nonrandomized observational study. METHODS: This study included 134 (77.9%) of 172 initially enrolled patients who underwent ICL implantation and completed a 1-year follow-up. The extent of haptics present in the ciliary sulcus (ICS) was measured. Patients were categorized based on ICS count (0 to 4). The position of the haptics was quantified as the distance between the iris root and the terminal tip of ICL haptics (iris root to haptic tip, IRH). The related factors to the ICS count and its correlation with the central vault were analyzed. RESULTS: ICS distribution was 0 ICS in 19 eyes (14.2%), 1 in 22 eyes (16.4%), 2 in 32 eyes (23.9%), 3 in 29 eyes (21.6%), and 4 in 32 eyes (23.9%). Parameters like maximum ciliary body thickness (CBTmax, P = .008), iris-ciliary process distance (ICPD, P < .001), and ciliary process length ( P = .034) varied significantly across ICS groups. A multiple linear regression analysis revealed that the iris-ciliary angle ( P = .006), CBTmax ( P = .007), the distance between the sulcus-to-sulcus plane and the anterior crystalline lens surface (STSL, P = .035), and ICL size ( P = .015) were significantly associated with IRH. Spherical equivalents ( P = .042), STSL ( P = .001), and ICS count ( P = .020) significantly correlated with the central vault. CONCLUSIONS: Shortened ciliary process is a primary risk for haptic malposition. The ICS count significantly relates to the central vault.


Asunto(s)
Miopía , Lentes Intraoculares Fáquicas , Humanos , Tecnología Háptica , Estudios Prospectivos , Implantación de Lentes Intraoculares , Agudeza Visual , Miopía/cirugía , China , Iris , Factores de Riesgo , Estudios Retrospectivos
20.
Sci Total Environ ; 912: 169226, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38101627

RESUMEN

Recent screening surveys have shown the presence of unknown source halogenated organic compounds (HOCs) in shale gas wastewater. However, their occurrence, profile, transport in surrounding surface water and environmental risk potentials remain unclear. Here, a method for the extraction and quantitative determination of 13 HOCs in water by solid phase extraction combined with gas chromatography-mass spectrometry (GC-MS) was established. All of the targeted HOCs were detected and peaked at the outfall, while these contaminants were generally not detected in samples upstream of the outfall, suggesting that these contaminants originated from the discharge of shale gas wastewater; this was further supported by the fact that these pollutants were generally detected in downstream samples, with a tendency for pollutant concentrations to decrease progressively with increasing distance from the outfall. However,different HOCs had different transport potential in water. In addition, the toxicological effects of typical HOCs were evaluated using HepG2 as a model cell. The results indicated that diiodoalkanes suppressed HepG2 cell proliferation and induced ROS generation in a concentration-dependent manner. Mechanistic studies showed that diiodoalkanes induced apoptosis in HepG2 cells via the ROS-mediated mitochondrial pathway, decreasing mitochondrial membrane potential and increasing intercellular ATP and Ca2+ levels. On the other hand, RT-qPCR and Western blot assays revealed that the SLC7A11/GPX4 signaling pathway and HO-1 regulation of ferritin autophagy-dependent degradation (HO-1/FTL) pathway were involved in the ferroptosis pathway induced by diiodoalkane in HepG2 cells. Our study not only elucidates the contamination profiles and transport of HOCs in surface water of typical shale gas extraction areas in China, but also reveals the toxicity mechanism of typical diiodoalkane.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/toxicidad , Gas Natural/análisis , Especies Reactivas de Oxígeno/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Compuestos Orgánicos , Agua/análisis , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA