Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 945: 174145, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38909795

RESUMEN

The coexistence of hexavalent chromium (Cr(VI)) and nitrate (NO3-) in groundwater and surface water presents a considerable challenge for the natural attenuation of these two contaminants because their interactions in nature remain contentious. This study investigated the interplay between Cr(VI) and NO3- in hyporheic zone (HZ) sediments by integrating Cr(VI) reduction kinetics, NO3- transformation, microbial community structure, and a three-rate model. The concurrent natural attenuation of Cr(VI) and NO3- in the sediments was significantly influenced by their initial concentrations and redox conditions. The reduction of low concentrations of Cr(VI) (37.1 and 96.2 µM) was slightly enhanced by NO3-, while inhibitory effects were observed at high concentrations of Cr(VI) (200.0 µM). However, except for an initial low concentration of Cr(VI) (37.1 µM) and NO3- (450 µM), the reduction of NO3- was adversely affected by Cr(VI). The reduction rates and efficiencies of Cr(VI) and NO3- were noticeably lower under aerobic conditions than under anaerobic conditions. This phenomenon can be attributed to the presence of O2, which decreased the selectivity of sediments-associated Fe(II) towards Cr(VI) and NO3- and induced alterations in the microbial community structure, leading to subsequent changes in NO3- transformation. Furthermore, the three-rate model represents a robust approach for elucidating the reduction of Cr(VI) in the presence of co-contaminants, such as NO3- contamination under diverse redox conditions. This study provides further insights into the interaction mechanism between Cr(VI) and NO3- within the HZ, necessitating the consideration of the microbial toxicity of Cr(VI) and electron competition among Cr(VI), NO3-, and O2.

2.
Materials (Basel) ; 16(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37629910

RESUMEN

The scattering of fragments is a notable characteristic of the explosive detonation of a shelled charge. This study examines the fracture and fragmentation of the shell and the process by which natural fragments form under the strains of implosion. The analysis takes into account both the explosive's energy output and the casing's dynamic response. For this purpose, utilizing a thermochemical code as an alternative to the conventionally employed cylinder test, the Jones-Wilkins-Lee equation of state (JWL EOS) was calibrated within a range of relative specific volume up to 13. The detonation of the shelled charge was subsequently analyzed using the continuum-discontinuum element method (CDEM). Following this, the formation mechanisms and scattering characteristics of natural fragments were scrutinized. The analysis found that the shell predominantly experiences shear failure with uniform evolution, displaying a "hysteresis effect" and two mutation stages in the evolution of tensile failure. Within the JWL EOS's calibrated range, the representation of fragment displacement and velocity improved by 47.97% and 5.30%, respectively. This study provides valuable guidance for designing the power field of warheads and assessing their destructive power.

3.
Chemosphere ; 322: 138169, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36812994

RESUMEN

Clarifying the sources and historical variation of metal(loid)s in agricultural river sediments is vital for watershed contamination control and environmental improvements. In this study, a systematical geochemical investigation of Pb isotopic characteristics and the spatial-temporal distribution of metal(loid)s abundances was conducted to delineate the origins of metal(loid)s (Cd, Zn, Cu, Pb, Cr, and As) in sediments from an agricultural river, Sichuan Province, Southwest China. The results showed significant enrichment of Cd and Zn in the whole watershed, with substantial anthropogenic contributions of 86.1% and 63.1% for the surface sediments, and 79.1% and 67.9% for the core sediments, respectively. As was mainly derived from natural sources. Cu, Cr, and Pb were originated from the mixing sources of natural and anthropogenic processes. The anthropogenic origin of Cd, Zn, and Cu in the watershed was closely correlated with agricultural activities. The profile of EF-Cd and EF-Zn displayed an increasing trend from the 1960s-1990s, and then kept a high value, which was consistent with the development of national agricultural activities. Pb isotopic signatures suggested multiple sources of the anthropogenic Pb contamination, including industrial/sewage discharge, coal combustion, and vehicle exhaust. The average anthropogenic 206Pb/207Pb ratio (1.1585) approximated that of local aerosols (1.1660), suggesting aerosol deposition was a crucial pathway of anthropogenic Pb input to sediment. Furthermore, the anthropogenic Pb percentages (mean of 52.3 ± 10.3%) from the EF approach were in line with that from the Pb isotopic method (mean of 45.5 ± 13.3%) for sediments under intense anthropogenic impacts.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Plomo/análisis , Cadmio/análisis , Ríos , Monitoreo del Ambiente , Sedimentos Geológicos , China , Isótopos/análisis , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Medición de Riesgo
4.
Sci Total Environ ; 868: 161734, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36682569

RESUMEN

Evaluation of aquifer response to earthquakes is important to understanding the evolution of aquifer properties and contaminant transport. In Changan Landfill, a multi parameter monitoring system was installed to collect data every 12 h. Principal Component Analysis (PCA), energy density and wavelet analysis, and tidal analysis were used to reveal the response mechanisms to four earthquakes, sensitivity of various parameters to seismic stimuli, and permeability evolution, respectively. The results showed that the chemical characteristics of two aquifers were distinct. The shallow aquifer was polluted by leachate, and the deep aquifer was less polluted. Coseismic responses were dominated by the deep aquifer and the relative contribution of each aquifer remained stable. Coseismic chemical changes were dominated by the opening and closing of fractures, and the long-term evolution was controlled by seasonality. The deep aquifer had a higher sensitivity to seismic stimuli than the shallow aquifer. Tidal analysis showed that a general permeability decrease during this monitoring period reduced contaminant transport, but some contaminants crossed the aquitard between the two aquifers after the Zizhong earthquake, due to an increase in vertical permeability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA