Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Base de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 30(18): 31728-31741, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242249

RESUMEN

The information dimension obtained by multispectral ghost imaging is more abundant than in single-band ghost imaging. Existing multispectral ghost imaging systems still meet some shortages, such as complex structure or reconstruction time-consuming. Here, an approach of cosinusoidal encoding multiplexed structured illumination multispectral ghost imaging is proposed. It can capture the multispectral image of the target object within one projection cycle with a single-pixel detector while maintaining high imaging efficiency and low time-consuming. The core of the proposed approach is the employed novel encoding strategy which is apt to decode and reconstruct the multispectral image via the Fourier transform. Specifically, cosinusoidal encoding matrices with specific frequency characteristics are fused with the orthogonal Hadamard basis patterns to form the multiplexed structured illumination patterns. A broadband photomultiplier is employed to collect the backscattered signals of the target object interacted by the corresponding structured illumination. The conventional linear algorithm is applied first to recover the mixed grayscale image of the imaging scene. Given the specific frequency distribution of the constructed cosinusoidal encoding matrices, the mixed grayscale image can be converted to the frequency domain for further decoding processing. Then, the pictures of multiple spectral components can be obtained with some manipulations by applying Fourier transform. A series of numerical simulations and experiments verified our proposed approach. The present cosinusoidal encoding multiplexed structured illumination can also be introduced in many other fields of high-dimensional information acquisition, such as high-resolution imaging and polarization ghost imaging.

2.
Appl Opt ; 61(23): 6905-6914, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36255772

RESUMEN

Single-pixel imaging (SPI) is a new technology with many applications and prospects. Polarization detection technology can improve the detection and identification ability of the imaging system. A near-infrared polarization SPI lidar system is designed to realize detection and polarization imaging of outdoor long-range targets. The depth, intensity, linear polarization, and polarization degree images of typical remote targets are obtained. The results show that the polarization image contains many details and contour information of the target, and the intensity image contains brightness and reflectivity information. Intensity and polarization information complement each other. The characteristics of intensity and polarization images at different spatial frequencies are analyzed for the first time, to our knowledge, by taking advantage of the Fourier modulation mode. We found that the proportion of high-frequency information in the polarization image is much higher than that of the intensity image. The sampling strategy of collecting only low-frequency components is applicable in intensity imaging but needs further improvement in polarization imaging. The polarization SPI lidar system can enrich the target information acquired, improve imaging contrast, and have significant application value for target detection and identification in complex backgrounds.

3.
Opt Express ; 30(21): 37484-37492, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36258336

RESUMEN

Long-range light detection and ranging (lidar) of active illumination optical imaging has widespread applications, such as remote sensing, satellite-based global topography, and target recognition and identification. Here, to make trade-offs among imaging efficiency, resolution, receiving field of view, divergence angle, and detected distance, we demonstrate a scanning single-pixel imaging lidar (SSPIL), enjoying the merits of the traditional pointing-by-pointing scanning imaging and single-pixel imaging. The imaging strategy of SSPIL is divided into scanning search and staring imaging processes. These strategies can save most time consumption for imaging background areas and thus improve imaging efficiency. Three imaging experiments were conducted in real urban atmospheric conditions. The preliminary results show SSPIL has the ability for long-range imaging with high efficiency, high resolution, and a large receiving field of view. Also, from the imaging results, we found that multiple samples can improve the SNR of imaging in the real urban atmosphere. The present work may provide a valuable alternative approach in the long-range active illumination optical imaging fields.

4.
Sci Rep ; 12(1): 5353, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354859

RESUMEN

Non-ribosomal peptide synthetases (NRPS) are multi-modular/domain enzymes that catalyze the synthesis of bioactive peptides. A crucial step in the process is peptide elongation accomplished by the condensation (C) domain with the aid of a peptidyl carrier or thiolation (T) domain. Here, we examined condensation reaction carried out by NRPS AmbB involved in biosynthesis of L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) in P. aeruginosa. We determined crystal structures of the truncated T-C bidomain of AmbB in three forms, the apo enzyme with disordered T domain, the holo form with serine linked phosphopantetheine (Ppant) and a holo form with substrate (L-alanine) loaded onto Ppant. The two holo forms feature the T domain in a substrate-donation conformation. Mutagenesis combined with functional assays identified residues essential for the attachment of Ppant, anchoring the Ppant-L-Ala in the donor catalytic channel and the role of the conserved His953 in condensation activity. Altogether, these results provide structural insights into the condensation reaction at the donor site with a substrate-bound C domain of AmbB and lay the foundation for understanding the molecular mechanism of condensation which is crucial for AMB synthesis.


Asunto(s)
Péptido Sintasas , Dominio Catalítico , Péptido Sintasas/metabolismo , Dominios Proteicos , Estructura Terciaria de Proteína
5.
Opt Lett ; 47(4): 870-873, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167546

RESUMEN

Target tracking has found important applications in particle tracking, vehicle navigation, aircraft monitoring, etc. However, employing single-pixel imaging techniques to track a fast-moving object with a high frame rate is still a challenge, due to the limitation of the modulation frequency of the spatial light modulator and the number of required patterns. Here we report a complementary single-pixel object tracking approach which requires only two geometric moment patterns to modulate the reflected light from a moving object in one frame. Using the complementary nature of a digital micromirror device (DMD), two identical single-pixel detectors are used to measure four intensities which can be used to acquire the values of zero-order and first-order geometric moments to track the centroid of a fast-moving object. We experimentally demonstrate that the proposed method successfully tracks a fast-moving object with a frame rate of up to 11.1 kHz in the first two experiments. In the third experiment, we compare previous works and find that the method can also accurately track a fast-moving object with a changing size and moving speed of 41.8 kilopixel/s on the image plane. The root mean squared errors in the transverse and axial directions are 0.3636 and 0.3640 pixels, respectively. The proposed method could be suitable for ultrafast target tracking.

6.
Opt Express ; 29(19): 30327-30336, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34614758

RESUMEN

Real-time tracking of fast-moving object have many important applications in various fields. However, it is a great challenge to track of fast-moving object with high frame rate in real-time by employing single-pixel imaging technique. In this paper, we present the first single-pixel imaging technique that measures zero-order and first-order geometric moments, which are leveraged to reconstruct and track the centroid of a fast-moving object in real time. This method requires only 3 geometric moment patterns to illuminate a moving object in one frame. And the corresponding intensities collected by a single-pixel detector are equivalent to the values of the zero-order and first-order geometric moments. We apply this new approach of measuring geometric moments to object tracking by detecting the centroid of the object in two experiments. The root mean squared errors in the transverse and axial directions are 5.46 pixels and 5.53 pixels respectively, according to the comparison of data captured by a camera system. In the second experiment, we successfully track a moving magnet with a frame rate up to 7400 Hz. The proposed scheme provides a new method for ultrafast target tracking applications.

7.
Opt Express ; 26(13): 16547-16559, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-30119483

RESUMEN

Single-pixel imaging has the ability to generate images at nonvisible wavelengths and under low light conditions and thus has received increasing attention in recent years. Fourier single-pixel imaging (FSI) utilizes deterministic basis patterns for illumination to greatly improve the quality of image reconstruction. However, the original FSI based on grayscale Fourier basis illumination patterns is limited by the imaging speed as the digital micro-mirror devices (DMD) used to generate grayscale patterns operate at a low refresh rate. In this paper, a new approach is proposed to increase the imaging speed of DMD-based FSI without reducing the imaging spatial resolution. In this strategy, the grayscale Fourier basis patterns are split into a pair of grayscale patterns based on positive/negative pixel values, which are then decomposed into a cluster of binary basis patterns based on the principle of decimalization to binary. These binary patterns are used to illuminate the imaged object. The resulting detected light intensities multiply the corresponding weighted decomposed coefficients and are summed, and the results can be used to generate the Fourier spectrum for the imaged object. Finally, an inverse Fourier transform is applied to the Fourier spectrum to obtain the object image. The proposed technique is verified by a computational simulation and laboratory experiments. Both static and dynamic imaging experiments are carried out to demonstrate the proposed strategy. 128 × 128 pixels dynamic scenes at a speed of ~9 frames-per-second are captured under 22 KHz projection rate using a DMD. The reported technique accelerates the imaging speed for DMD-based FSI and provides an alternative approach to improve FSI efficiency.

8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(7): 1780-4, 2014 Jul.
Artículo en Chino | MEDLINE | ID: mdl-25269279

RESUMEN

A new method for path transverse wind velocity survey was introduced by analyzing time lagged covariance function of different separation sub-apertures of Hartmann wavefront sensor. A theoretical formula was logically deduced for the light propagation path transverse wind velocity profile. According to the difference of path weighting function for different sub apertures spacing, how to select reasonable path weighting functions was analyzed. Using a Hartmann wavefront sensor, the experiment for measuring path transverse velocity profile along 1 000 m horizontal propagating path was carried out for the first time to our knowledge. The experiment results were as follows. Path transverse averaged velocity from sensor had a good consistency with transverse velocity from the wind anemometer sited near the path receiving end. As the path was divided into two sections, the path transverse velocity of the first section had also a good consistency with that of the second one. Because of different specific underlaying surface of light path, the former was greater than the later over all experiment period. The averaged values were 1.273 and 0.952 m x s(-1) respectively. The path transverse velocity of second section and path transverse averaged velocity had the same trend of decrease and increase with time. The correlation coefficients reached 0.86.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA