Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 929
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Environ Sci (China) ; 148: 198-209, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095157

RESUMEN

Norfloxacin is widely used owing to its strong bactericidal effect on Gram-negative bacteria. However, the residual norfloxacin in the environment can be biomagnified via food chain and may damage the human liver and delay the bone development of minors. Present work described a reliable and sensitive smartphone colorimetric sensing system based on cobalt-doped Fe3O4 magnetic nanoparticles (Co-Fe3O4 MNPs) for the visual detection of norfloxacin. Compared with Fe3O4, Co-Fe3O4 MNPs earned more remarkably peroxidase-like activity and TMB (colorless) was rapidly oxidized to oxTMB (blue) with the presence of H2O2. Interestingly, the addition of low concentration of norfloxacin can accelerate the color reaction process of TMB, and blue deepening of the solution can be observed with the naked eye. However, after adding high concentration of norfloxacin, the activity of nanozyme was inhibited, resulting in the gradual fading of the solution. Based on this principle, a colorimetric sensor integrated with smartphone RGB mode was established. The visual sensor exhibited good linearity for norfloxacin monitoring in the range of 0.13-2.51 µmol/L and 17.5-100 µmol/L. The limit of visual detection was 0.08 µmol/L. In the actual water sample analysis, the spiked recoveries of norfloxacin were over the range of 95.7%-104.7 %. These results demonstrated that the visual sensor was a convenient and fast method for the efficient and accurate detection of norfloxacin in water, which may have broad application prospect.


Asunto(s)
Cobalto , Colorimetría , Norfloxacino , Teléfono Inteligente , Contaminantes Químicos del Agua , Norfloxacino/análisis , Colorimetría/métodos , Cobalto/análisis , Cobalto/química , Contaminantes Químicos del Agua/análisis , Antibacterianos/análisis , Peroxidasa , Límite de Detección
2.
J Adv Res ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233001

RESUMEN

INTRODUCTION: Methyl jasmonate (MeJA) and MYB transcription factors (TFs) play important roles in pathogen resistance in several plants, but MYB TFs in conjunction with MeJA-induced defense against Pseudomonas tolaasii in edible mushrooms remain unknown. OBJECTIVES: To investigate the role of a novel 3R-MYB transcription factor (AbMYB11) in MeJA-induced disease resistance of Agaricus bisporus and in the resistance of transgenic Arabidopsis to P. tolaasii. METHODS: Mushrooms were treated with MeJA alone or in combination with phenylpropanoid pathway inhibitors, and the effects of the treatments on the disease-related and physiological indicators of the mushrooms were determined to assess the role of MeJA in inducing resistance and the importance of the phenylpropanoid pathway involved. Subcellular localization, gene expression analysis, dual-luciferase reporter assay, electrophoretic mobility shift assay, and transgenic Arabidopsis experiments were performed to elucidate the molecular mechanism of AbMYB11 in regulating disease resistance. RESULTS: MeJA application greatly improved mushroom resistance to P. tolaasii infection, and suppression of the phenylpropanoid pathway significantly weakened this effect. MeJA treatment stimulated the accumulation of phenylpropanoid metabolites, which was accompanied by increased the activities of biosynthetic enzymes and the expression of phenylpropanoid pathway-related genes (AbPAL1, Ab4CL1, AbC4H1) and an AbPR-like gene, further confirming the critical role of the phenylpropanoid pathway in MeJA-induced responses to P. tolaasii. Importantly, AbMYB11, localized in the nucleus, was rapidly induced by MeJA treatment under P. tolaasii infection; it transcriptionally activated the phenylpropanoid pathway-related and AbPR-like genes, and AbMYB11 overexpression in Arabidopsis significantly increased the transcription of phenylpropanoid-related genes, the accumulation of total phenolics and flavonoids, and improved resistance to P. tolaasii. CONCLUSION: This study clarified the pivotal role of AbMYB11 as a regulator in disease resistance by modulating the phenylpropanoid pathway, providing a novel idea for the breeding of highly disease-resistant edible mushrooms and plants.

3.
Heliyon ; 10(18): e37655, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39315127

RESUMEN

Online signature verification (OSV) is widely used in finance, law and other fields, and is one of the important research projects on biological characteristics. However, its data set has a small scale and has high requirements for generalization of certification models. Therefore, how to overcome these problems is of great value to improve the practicality and security of online handwriting signature technology. We propose a writer-independent online handwritten signature verification method, which adopts the relative position matrix method to convert the traditional temporal features into images for processing. This method enriched the features of the signatures, serving the purpose of data augmentation. Then two-dimensional multi-scale feature fusion based Siamese neural network (2D-MFFnet) is built for representing and learning the importance of each channel adaptively combined with the attention mechanism. Finally, a temporal convolutional network is designed to construct the classifier. The results illustrate that compared with traditional time series models, the algorithm has reduced the equal error rate by at least 2.52 % on the open datasets MCYT-100 and SVC2004 task2.

4.
medRxiv ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39314961

RESUMEN

Introduction: Lipoprotein(a) (Lp(a)) is a circulating apolipoprotein B (ApoB) containing particle that has been observationally linked to atherosclerotic cardiovascular disease and is the target of emerging therapeutics. Recent work has highlighted the role of circulating lipoproteins in abdominal aortic aneurysm (AAA). We sought to triangulate human observational and genetic evidence to evaluate the role of Lp(a) in AAA. Methods: We tested the association between circulating levels of Lp(a) and clinically diagnosed abdominal aortic aneurysms while controlling for traditional AAA risk factors and levels of ApoB using logistic regression among 795 individuals with and 374,772 individuals without AAA in the UK Biobank (UKB). Multivariable Mendelian randomization (MVMR) was used to test for putatively causal associations between Lp(a) and AAA controlling for ApoB. Genetic instruments for Lp(a) and ApoB were created from genome-wide association studies (GWAS) of Lp(a) and ApoB comprising 335,796 and 418,505 UKB participants, respectively. The instruments were tested for association with AAA using data from a GWAS of 39,221 individuals with and 1,086,107 without AAA. Results: Elevated Lp(a) levels were observationally associated with an increased risk of AAA (OR 1.04 per 10 nmol/L Lp(a); 95%CI 1.02-1.05; P<0.01). Clinically elevated Lp(a) levels (>150nmol/L) were likewise associated with an increased risk of AAA (OR 1.47; 95% CI 1.15-1.88; P < 0.01) when compared to individuals with Lp(a) levels <150nmol/L. MVMR confirmed a significant, ApoB-independent association between increased Lp(a) and increased risk of AAA (OR 1.13 per SD increase in Lp(a); 95%CI 1.02-1.24; P<0.02). Conclusion: Both observational and genetic analyses support an association between increased Lp(a) and AAA risk that is independent of ApoB. These findings suggest that Lp(a) may be a therapeutic target for AAA and drive the inclusion of AAA as an outcome in clinical trials of Lp(a) antagonists.

5.
Anal Methods ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263759

RESUMEN

Water environments contaminated by heavy metal ions present significant challenges because these pollutants do not degrade naturally, leading to their gradual bioaccumulation in animals and plants, which ultimately poses an insurmountable threat to human health. Therefore, rapid and accurate detection of heavy metal ions in water is of great significance for environmental protection and disease prevention. In this work, we developed a novel method based on microfluidic electrophoresis coupled with indirect chemiluminescence for the immediate detection of Cd(II), Pb(II) and Hg(II) heavy metal ions. The displacement of the Co(II) ions within the chemiluminescence mixture by the above migrating sample cations caused a measurable reduction in the background signal. The results showed that the detection limits of Cd(II), Pb(II) and Hg(II) ions under the best detection conditions were 5.83 × 10-8 M, 5.38 × 10-8 M and 2.09 × 10-8 M, respectively, which were 1-2 orders of magnitude lower than those of the indirect UV method and 1 order of magnitude lower than that of the indirect laser induced detection method. This method can provide a possibility for the rapid detection of multiple heavy metal ions in actual water environments.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39308124

RESUMEN

The ketamine (KET) and its analogs consumed by humans are becoming emerging contaminants (ECs), as they at present in surface waters after being carried through wastewater systems. Drugs in wastewater can be analyzed using the direct-injection method, a simple wastewater analysis (WWA) method that can provide objective, continuous and nearly to real-time findings. This article describes an ultra-high-pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous quantification and confirmation of seven KET-based ECs in wastewater by direct injection. After optimization of the UPLC-MS/MS and sample pretreatment conditions, the method was validated and applied to samples (n = 157) collected from several wastewater treatment plants (WWTPs) in southern China in which KET had the highest detection rate. The established direct-injection method was not only simple to perform but also had better sensitivity, shorter detection times, and analyzed more KET-based ECs than currently published methods, meeting the requirements for the monitoring and high-throughput analysis of common KET-based ECs. We also analyzed the fragmentation pathway of KET-based ECs to obtain product ion information on other unknown substances. Additional studies are needed to establish a comprehensive direct-injection screening method of ECs in wastewater on model-based assessment.

7.
J Plant Physiol ; 303: 154350, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39293266

RESUMEN

Fruit ripening in tomato is a highly coordinated developmental process accompanied with fruit softening, which is closely associated with cell wall degradation and remodeling. Xyloglucan endotransglucosylase/hydrolases (XTHs) are known to play an essential role in cell wall xyloglucan metabolism. Tomato XTH5 exhibits xyloglucan endotransglucosylase (XET) activity in vitro, but the understanding of its biological role in fruit ripening remains unclear. In this study, we revealed that SlXTH5 is highly expressed in mature fruits. Knockout mutant plants of SlXTH5 were generated by CRISPR/Cas9 gene editing strategy in tomato cultivar Micro-Tom. The mutant fruits showed accelerated transition from unripe to ripe process and earlier ethylene accumulation compared to wild type fruits. Although the mutation of SlXTH5 did not affect the size, weight and number of fruits, it indeed increased fruit firmness and extended shelf life, which is probably attributed to the increased cell layer and cell wall thickness of pericarp tissue. Pathogen infection experiment showed the enhanced resistance of mutant fruits to Botrytis cinerea. These results revealed the role of SlXTH5 in fruit ripening process, and provide new insight into how cell wall metabolism and remodeling regulate fruit softening and shelf life.

8.
Open Med (Wars) ; 19(1): 20230893, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221034

RESUMEN

Insulin-like growth factor binding protein 2 (IGFBP2) is overexpressed in tumor tissues of several malignancies, including pancreatic cancer. Because of its role in tumor progression, IGFBP2 has been investigated as a tumor biomarker. However, little is known about its utility in pancreatic cancer. Plasma IGFBP2 levels were determined using enzyme-linked immunosorbent assay in 75 patients with pancreatic ductal adenocarcinoma (PDAC), 73 matched healthy controls, and 17 chronic pancreatitis patients. Our results showed that the plasma IGFPB2 level was significantly higher in PDAC patients than in patients with chronic pancreatitis and healthy controls. At a cut-off value of 333.9 ng/mL, the specificity and sensitivity were 78.08 and 65.33%, respectively. IGFBP2 level alone did not outperform carbohydrate antigen 19-9 (CA19-9) in diagnostic accuracy, but it successfully identified 9 out of 24 PDAC patients who were misidentified by CA19-9. The combination of IGFBP2 and CA19-9 was more accurate in the detection of PDAC than CA19-9 alone. IGFBP2 was more accurate than the other in discriminating between chronic pancreatitis and PDAC. Plasma IGFBP2, rather than CA19-9, was higher in the new-onset diabetes, lymph node involvement, and distant metastasis subgroups. IGFBP2 level was notably higher in stage IV cases than in stage I/II or stage III disease. However, CA19-9 did not show a difference between stages. After adjusting for lymph node involvement and distant metastasis, plasma IGFBP2 was identified as an independent prognostic marker for PDAC. The median survival time for patients with an IGFBP2 level ≥333.9 ng/mL was significantly shorter than that for patients with an IGFBP2 level <333.9 ng/mL. Marked elevation of plasma IGFBP2 in PDAC is associated with poorer survival. IGFBP2 may be considered as a supplementary biomarker for the diagnosis and prognostic prediction in Chinese pancreatic cancer patients.

9.
Angew Chem Int Ed Engl ; : e202417493, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292224

RESUMEN

The rational design of porous covalent organic frameworks (COFs) with high conductivity and reversible redox activity is the key to improving their performance in sodium-ion batteries (SIBs). Herein, we report a series of COFs (FPDC-TPA-COF, FPDC-TPB-COF, and FPDC-TPT-COF) based on an organosulfur linker, (trioxocyclohexane-triylidene)tris(dithiole-diylylidene))hexabenzaldehyde (FPDC). These COFs feature two-dimensional crystalline structures, high porosity, good conductivity, and densely packed redox-active sites, making them suitable for energy storage devices. Among them, FPDC-TPT-COF demonstrates a remarkably high specific capacity of 420 mAh g-1 (0.2 A g-1), excellent cycling stability (~87% capacity retention after 3000 cycles, 1.0 A g-1) and high rate performance (339 mAh g-1 at 2.0 A g-1) as an anode for SIBs, surpassing most reported COF-based electrodes. The superior performance is attributed to the dithiole moieties enhancing the conductivity and the presence of redox-active carbonyl, imine, and triazine sites facilitating Na storage. Furthermore, the sodiation mechanism was elucidated through in-situ experiments and density functional theory (DFT) calculations. This work highlights the advantages of integrating multiple functional groups into redox-active COFs for the rational design of efficient and stable SIBs.

10.
Dalton Trans ; 53(36): 15316-15323, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39224067

RESUMEN

Two o-carborane-hybridized macrocyclic arenes have been synthesized via Friedel-Crafts alkylation of carborane diaryl derivatives. The single-crystal X-ray diffraction analysis clearly revealed their cavity structure and intermolecular interaction force. These novel macrocycles exhibited aggregation-induced luminescence and intramolecular charge transfer properties and also significant selectivity towards nitro explosive compounds. This work provided a method for the synthesis of hybridized macrocyclic arenes.

11.
Integr Zool ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252516

RESUMEN

Desert rodent communities spread plant seeds through the group effect of "selection complementation" and "fate complementation," which promotes the recovery of plant populations and the reconstruction of plant communities in desert areas.

13.
Nanoscale Horiz ; 9(10): 1813-1822, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39140287

RESUMEN

Visual adaptation is essential for optimizing the image quality and sensitivity of artificial vision systems in real-world lighting conditions. However, additional modules, leading to time delays and potentially increasing power consumption, are needed for traditional artificial vision systems to implement visual adaptation. Here, an ITO/PMMA/SiC-NWs/ITO photoelectric synaptic device is developed for compact artificial vision systems with the visual adaption function. The theoretical calculation and experimental results demonstrated that the heating effect, induced by the increment light intensity, leads to the photoelectric synaptic device enabling the visual adaption function. Additionally, a visual adaptation artificial neuron (VAAN) circuit was implemented by incorporating the photoelectric synaptic device into a LIF neuron circuit. The output frequency of this VAAN circuit initially increases and then decreases with gradual light intensification, reflecting the dynamic process of visual adaptation. Furthermore, a visual adaptation spiking neural network (VASNN) was constructed to evaluate the photoelectric synaptic device based visual system for perception tasks. The results indicate that, in the task of traffic sign detection under extreme weather conditions, an accuracy of 97% was achieved (which is approximately 12% higher than that without a visual adaptation function). Our research provides a biologically plausible hardware solution for visual adaptation in neuromorphic computing.

14.
Animals (Basel) ; 14(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39199868

RESUMEN

As the most abundant group of mammals, rodents possess a very rich ecotype, which makes them ideal for studying the relationship between diet and host gut microecology. Zokors are specialized herbivorous rodents adapted to living underground. Unlike more generalized herbivorous rodents, they feed on the underground parts of grassland plants. There are two species of the genus Myospalax in the Eurasian steppes in China: one is Myospalax psilurus, which inhabits meadow grasslands and forest edge areas, and the other is M. aspalax, which inhabits typical grassland areas. How are the dietary choices of the two species adapted to long-term subterranean life, and what is the relationship of this diet with gut microbes? Are there unique indicator genera for their gut microbial communities? Relevant factors, such as the ability of both species to degrade cellulose, are not yet clear. In this study, we analyzed the gut bacterial communities and diet compositions of two species of zokors using 16S amplicon technology combined with macro-barcoding technology. We found that the diversity of gut microbial bacterial communities in M. psilurus was significantly higher than that in M. aspalax, and that the two species of zokors possessed different gut bacterial indicator genera. Differences in the feeding habits of the two species of zokors stem from food composition rather than diversity. Based on the results of Mantel analyses, the gut bacterial community of M. aspalax showed a significant positive correlation with the creeping-rooted type food, and there was a complementary relationship between the axis root-type-food- and the rhizome-type-food-dominated (containing bulb types and tuberous root types) food groups. Functional prediction based on KEGG found that M. psilurus possessed a stronger degradation ability in the same cellulose degradation pathway. Neutral modeling results show that the gut flora of the M. psilurus has a wider ecological niche compared to that of the M. aspalax. This provides a new perspective for understanding how rodents living underground in grassland areas respond to changes in food conditions.

15.
Heliyon ; 10(15): e34975, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39144956

RESUMEN

Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.

17.
Med ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39116870

RESUMEN

BACKGROUND: The global burden of metabolic dysfunction-associated steatotic liver disease (MASLD) is growing, but its subsequent health consequences have not been thoroughly examined. METHODS: A phenome-wide association study was conducted to map the associations of MASLD with 948 unique clinical outcomes among 361,021 Europeans in the UK Biobank. Disease trajectory and comorbidity analyses were applied to visualize the sequential patterns of multiple comorbidities related to the occurrence of MASLD. The associations jointly verified by observational and polygenic phenome-wide analyses were further replicated by two-sample Mendelian randomization analysis using data from the FinnGen study and international consortia. FINDINGS: The observational and polygenic phenome-wide association study revealed the associations of MASLD with 96 intrahepatic and extrahepatic diseases, including circulatory, metabolic, genitourinary, neurological, gastrointestinal, and hematologic diseases. Sequential patterns of MASLD-related extrahepatic comorbidities were primarily found in circulatory, metabolic, and inflammatory diseases. Mendelian randomization analyses supported the causal associations between MASLD and the risk of several intrahepatic disorders, metabolic diseases, cardio-cerebrovascular disease, and ascites but found no associations with neurological diseases. CONCLUSIONS: This study elucidated multisystem comorbidities and health consequences of MASLD, contributing to the development of combination interventions targeting distinct pathways for health promotion among patients with MASLD. FUNDING: X.L. was funded by the Natural Science Fund for Distinguished Young Scholars of Zhejiang Province (LR22H260001) and the National Nature Science Foundation of China (82204019) and Y.D. was funded by the Key Project of Traditional Chinese Medicine Science and Technology Plan of Zhejiang Province (GZY-ZJ-KJ-24077) and the National Natural Science Foundation of China (82001673 and 82272860).

18.
Pract Lab Med ; 41: e00422, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39155970

RESUMEN

Objectives: We aimed to evaluate the analytical performance of second-trimester maternal serum screening in China, and to compare if there are differences in sigma levels across different methods and months. Methods: A retrospective study was conducted to assess the analytical quality levels of laboratories by calculating the Sigma metrics with prenatal screening biomarkers: AFP, Total ß-hCG, free ß-hCG, uE3. Data from 591 laboratories were selected. Sigma metrics were computed using the formula: Sigma metrics(σ) = (%TEa - |%Bias|)/%CV. The Friedman test and Mann-Whitney test were used to compare differences across various methods and different months. The Hodges-Lehmann was used for determining 95 % confidence intervals of pseudo-medians. Results: Only uE3 showed significant monthly variations in sigma calculations. However, around 8 % of laboratories across all four analytes demonstrated sigma levels both above 6 and below 3 in different months. Laboratories utilizing time-resolved fluorescence methods significantly outperformed those using chemiluminescence in sigma level. For AFP, the pseudo-median difference between these methods lies within a 95 % confidence interval of (-3.22, -1.93), while for uE3, it is at (-2.30, -1.40). Notably, the median sigma levels for all analytes reached the 4-sigma threshold, with free ß-hCG even attaining the 6-sigma level. Conclusion: With current standards, China's second-trimester maternal serum screening is of relatively high analytical quality, and variations in sigma levels exist across different months and methods.

19.
ACS Appl Mater Interfaces ; 16(33): 44202-44209, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39134470

RESUMEN

Radiation detectors based on metal halide perovskite (MHP) single crystals (SCs) have exhibited exceptional sensitivity, low detection limit, and remarkable energy resolution. However, the operational stability issue still dramatically impedes their commercialization due to degradation induced by high-energy irradiation and large bias. Here, we propose an innovative infrared healing strategy to restore the devices that have undergone severe damage from both long-term biasing and X-ray irradiation. Compared to the slow and inefficient intrinsic self-healing process of MHPs, the infrared healing method demonstrates the capacity to achieve rapid recovery of the detection performance of the degraded devices within just 1 h. We reveal that the healing mechanism is mainly related to the reduction of the ion-migration activation energy in MHP SCs under infrared illumination, which promotes the back diffusion of the displaced ions to their original lattice positions and remedies defects. Finally, the healing effect is further confirmed through the gamma-ray spectroscopy acquisition with degraded MHP SCs, whose energy resolution at 59.5 keV of 241Am source is improved from 36% to 12% following infrared illumination. These results present infrared healing as a simple and economic method to extend the service life of MHP SC-based detectors.

20.
Angew Chem Int Ed Engl ; : e202409951, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177482

RESUMEN

Mesoporous metal‒organic frameworks (MOFs) are promising supports for the immobilization of enzymes, yet their applications are often limited by small pore apertures that constrain the size of encapsulated enzymes to below 5 nm. In this study, we introduced labile linkers (4,4',4''-(2,4,6-boroxintriyl)-tribenzoate, TBTB) with dynamic boroxine bonds into mesoporous PCN-333, resulting in PCN-333-TBTB with enhanced enzyme loading and protection capabilities. The selective breaking of B-O bonds creates defects in PCN-333, which effectively expands both window and cavity sizes, thereby unlocking hidden mesopores for enzyme encapsulation. Consequently, this strategy not only increases the adsorption kinetics of small enzymes (<5 nm) such as cytochrome c (Cyt C) and horseradish peroxidase (HRP), but also enables the immobilization of various large-sized enzymes (>5 nm), such as glycoenzymes. The glycoenzymes@PCN-333-TBTB platform was successfully applied to synthesize thirteen complex oligosaccharides and polysaccharides, demonstrating high activity and enhanced enzyme stability. The dynamic linker-mediated enzyme encapsulation strategy enables the immobilization of enzymes exceeding the inherent pore size of MOFs, thus broadening the scope of enzymatic catalytic reactions achievable with MOF materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA