RESUMEN
An efficient one-pot three-component palladium-catalyzed domino reaction of aryl iodide, 2-bromophenylboronic acid, and norbornadiene to produce phenanthrenes has been developed. Norbornadiene serves both as the activator of ortho-C-H bond and the source of ethylene via a retro-Diels-Alder reaction. The method features inexpensive and readily available substrates, a broad range of functional groups, and good yields.
RESUMEN
A one-pot sulfenylation/cyclization of o-isocyanodiaryl amines has been described for the preparation of 11-sulfenyl dibenzodiazepines. This AgI-catalyzed reaction covers an unexplored tandem process to give seven-membered N-heterocycles. This transformation shows a broad range of substrate scope, simple operation, and moderate to good yields under aerobic conditions. Diphenyl diselenide can also be produced in an acceptable yield.
RESUMEN
A Mn(III)-mediated radical addition/cyclization reaction of isocyanides with aryl boronic acids/diarylphosphine oxides has been developed. A series of 11-arylated/-phosphorylated dibenzodiazepines were efficiently constructed in moderate to excellent yields under mild reaction conditions via imidoyl radical process. The present protocol offers novel access to functionalized seven-membered N-heterocycles.
RESUMEN
A straightforward protocol for the synthesis of 11-trifluoromethylated dibenzodiazepines has been developed via TBAC-induced trifluoromethylation/cyclization of o-isocyanodiaryl amines using Togni's reagent as the trifluoromethyl source. This is the first report on the one-step construction of CF3-containing dibenzodiazepine drug skeletons. Additionally, a series of 11-trifluoromethylated dibenzodiazepines were afforded in moderate to excellent yields under transition-metal-free conditions.
Asunto(s)
Aminas , Ciclización , Catálisis , Estructura MolecularRESUMEN
A radical addition/cyclization reaction of o-isocyanodiaryl amines has been developed for the efficient synthesis of potentially bioactive dibenzo[b,e][1,4]diazepine-11-carboxylates and dibenzo[b,e][1,4]diazepine-11-carboxamides. This Fe(acac)2/TBHP-promoted radical cascade process involves an unexplored isocyanide addition and the following cyclization to form 11-functionalized dibenzodiazepines. Moreover, the alkoxycarbonylation and carboxamidation of o-isocyanodiaryl amines show broad substrate scope and good functional group compatibility under mild conditions.
Asunto(s)
Aminas , Cianuros , Ácidos Carboxílicos , Catálisis , CiclizaciónRESUMEN
A novel DMF-assisted radical cyclization of o-isocyanodiaryl ethers via 1,5-aryl migration has been developed for the synthesis of a series of 2-arylbenzoxazoles by the FeCl3/TBHP/Et3N catalytic system in DMF. However, N,N-dimethylbenzo[d]thiazole-2-carboxamide and N,N-dimethylbenzo[d]selenazole-2-carboxamide were obtained from the corresponding substrate 2-isocyanophenyl p-methoxyphenyl thioether and 2-isocyanodiphenyl selenoether under the same conditions. A possible mechanism may involve aryl 1,5-migration and DMF-assisted radical cyclization of o-isocyanodiaryl ethers.
RESUMEN
A TBAB-mediated brominative 5-exo-dig oxy-cyclization of 2-alkynylbenzamide is described here for the synthesis of isobenzofuran-1-imines and isobenzofuran derivatives at room temperature with a high efficiency and a broad reaction scope. The resulting isobenzofuran derivatives are also applied for synthesising various substituted isobenzofuran derivatives.
RESUMEN
A regioselective 2,4-dibromohydration of conjugated enynes is reported for the synthesis of 2-(2,4-dibromobut-2-enoyl)benzoate. In the presence of tetra-n-butylammonium bromide and H2O the transformation proceeds smoothly with good reaction efficiency and a broad reaction scope. Mechanism studies indicate that the neighboring ester group participates in the 2,4-dibromohydration, and the oxygen atom of ester is transferred into the C-C triple bond to form the keto carbonyl group in the product. 2-(2,4-Dibromobut-2-enoyl)benzoate is recognized as an important synthon toward phthalazin-1(2H)-one and the natural product Shihunine.
RESUMEN
Bromide mediated neighboring ester-participating bromocyclizations of o-alkynylbenzoates are described here for the synthesis of benzil-o-carboxylates. 4-bromoisocoumarins are also synthesized when phenyl o-alkynylbenzoate is used as the substrate. Mechanistic studies suggest that the whole process is composed of an electrophilic bromocyclization and a dibromohydration-based ring-opening, and the neighboring ester group participates in the bromocyclization. Interestingly, the two oxygen atoms of the keto carbonyls in benzil-o-carboxylates are both derived from water. The electrophilic bromo source is in situ generated from the oxidation of bromide.