Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(21): 213602, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38856267

RESUMEN

The approach of shortcuts to adiabaticity enables the effective execution of adiabatic dynamics in quantum information processing with enhanced speed. Owing to the inherent trade-off between dynamical speed and the cost associated with the transitionless driving field, executing arbitrarily fast operations becomes impractical. To understand the accurate interplay between speed and energetic cost in this process, we propose theoretically and verify experimentally a new trade-off, which is characterized by a tightly optimized bound within s-parametrized phase spaces. Our experiment is carried out in a single ultracold ^{40}Ca^{+} ion trapped in a harmonic potential. By exactly operating the quantum states of the ion, we execute the Landau-Zener model as an example, where the quantum speed limit as well as the cost are governed by the spectral gap. We witness that our proposed trade-off is indeed tight in scenarios involving both initially eigenstates and initially thermal equilibrium states. Our work helps understanding the fundamental constraints in shortcuts to adiabaticity and illuminates the potential of underutilized phase spaces that have been traditionally overlooked.

2.
Phys Rev Lett ; 132(18): 180401, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38759168

RESUMEN

Although entanglement is considered as an essential resource for quantum information processing, whether entanglement helps for energy conversion or output in the quantum regime is still lack of experimental witness. Here, we report on an energy-conversion device operating as a quantum engine with the working medium acted by two entangled ions confined in a harmonic potential. The two ions are entangled by virtually coupling to one of the vibrational modes shared by the two ions, and the quantum engine couples to a quantum load, which is another shared vibrational mode. We explore the energy conversion efficiency of the quantum engine and investigate the useful energy (i.e., the maximum extractable work) stored in the quantum load by tuning the two ions in different degrees of entanglement as well as detecting the change of the phonons in the load. Our observation provides, for the first time, quantitative evidence that entanglement fuels the useful energy produced by the quantum engine, but not helpful for the energy conversion efficiency. We consider that our results may be useful to the study of quantum batteries for which one of the most indexes is the maximum extractable energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA