Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0301392, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578719

RESUMEN

Despite is known to have widespread distribution and the most active species of the family Chlorocyphidae, the molecular data of Rhinocypha fenestrella (Rambur, 1842) are relatively scarce. The present study is the first that examined the genetic diversity and phylogeographic pattern of the peacock jewel-damselfly R. fenestrella by sequencing the cytochrome C oxidase I (cox1) and 16S rRNA gene regions from 147 individuals representing eight populations in Malaysia. A total of 26 and 10 unique haplotypes were revealed by the cox1 and 16S rRNA genes, respectively, and 32 haplotypes were recovered by the concatenated sequences of cox1+16S. Analyses indicated that haplotype AB2 was the most frequent and the most widespread haplotype in Malaysia while haplotype AB1 was suggested as the common ancestor haplotype of the R. fenestrella that may arose from the Negeri Sembilan as discovered from cox1+16S haplotype network analysis. Overall haplotype and nucleotide diversities of the concatenated sequences were Hd = 0.8937 and Pi = 0.0028, respectively, with great genetic differentiation (FST = 0.6387) and low gene flow (Nm = 0.14). Population from Pahang presented the highest genetic diversity (Hd = 0.8889, Pi = 0.0022, Nh = 9), whereas Kedah population demonstrated the lowest diversity (Hd = 0.2842, Pi = 0.0003, Nh = 4). The concatenated sequences of cox1+16S showed genetic divergence ranging from 0.09% to 0.97%, whereas the genetic divergence for cox1 and 16S rRNA genes were 0.16% to 1.63% and 0.01% to 0.75% respectively. This study provides for the first-time insights on the intraspecific genetic diversity, phylogeographic pattern and ancestral haplotype of Rhinocypha fenestrella. The understanding of molecular data especially phylogeographic pattern can enhance the knowledge about insect origin, their diversity, and capability to disperse in particular environments.


Asunto(s)
Variación Genética , Odonata , Humanos , Animales , Filogenia , ARN Ribosómico 16S/genética , Odonata/genética , Filogeografía , Haplotipos , ADN Mitocondrial/genética
2.
Zool Stud ; 60: e47, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003341

RESUMEN

Studies on Odonata have gained attention worldwide as well as locally in Malaysia. Although there is a wealth of data available to be utilized for solving taxonomic problems, ecological and behavioural research areas are more favoured than taxonomy and systematics. Thus, there are confusions over how to correctly identify closely related and sympatric species, especially in female odonates. One such example is in the genus Rhinocypha. Consequently, the present study focuses on taxonomic work, employing multi-approaches in the form of morphological (morphological diagnostics, Field Emission Scanning Electron Microscope (FESEM) and geometric morphometric analysis), applying the molecular technique. Seventeen morphological characteristics were created to differentiate between the females of Rhinocypha spp. A FESEM was used on the female's ovipositor to focus on the anal appendages and sheathing valve (V3). Also, the phylogenetic patterns expressed by COI and 16S rRNA genes, and canonical variate analysis for the wing geometric morphometric revealed three clusters that supported the distinction of the Rhinocypha group. In summary, this study effectively developed an integrated approach of classic morphological and trendy molecular, combined with FESEM microscopy techniques, which provided corroborative evidence and resolved taxonomic uncertainties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA