Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Braz J Microbiol ; 54(2): 753-759, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36826705

RESUMEN

For 2G ethanol production, pentose fermentation and yeast tolerance to lignocellulosic hydrolyzate components are essential to improve biorefinery yields. Generally, physicochemical pre-treatment methodologies are used to facilitate access to cellulose and hemicellulose in plant material, which consequently can generate microbial growth inhibitory compounds, such as furans, weak acids, and phenolic compounds. Because of the unsatisfactory yield of wild-type Saccharomyces cerevisiae during pentose fermentation, the search for xylose-fermenting yeasts tolerant to microbial growth inhibitors has gained attention. In this study, we investigated the ability of the yeasts Pichia guilliermondii G1.2 and Candida oleophila G10.1 to produce ethanol from xylose and tolerate the inhibitors furfural, 5-hydroxymethylfurfural (HMF), acetic acid, formic acid, ferulic acid, and vanillin. We demonstrated that both yeasts were able to grow and consume xylose in the presence of all single inhibitors, with greater growth limitation in media containing furfural, acetic acid, and vanillin. In saline medium containing a mixture of these inhibitors (2.5-3.5 mM furfural and HMF, 1 mM ferulic acid, 1-1.5 mM vanillin, 10-13 mM acetic acid, and 5-7 mM formic acid), both yeasts were able to produce ethanol from xylose, similar to that detected in the control medium (without inhibitors). In future studies, the proteins involved in the transport of pentose and tolerance to these inhibitors need to be investigated.


Asunto(s)
Furanos , Xilosa , Xilosa/metabolismo , Furanos/metabolismo , Etanol/metabolismo , Pichia/metabolismo , Furaldehído/farmacología , Biomasa , Saccharomyces cerevisiae/metabolismo , Pentosas/metabolismo , Fermentación , Fenoles/metabolismo , Formiatos/metabolismo
2.
3 Biotech ; 11(11): 467, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34745818

RESUMEN

ß-Glucosidases have been extensively investigated to integrate the enzyme complex for cellulose fiber saccharification and for improving the aroma of wine. To produce these enzymes, greater attention has been given to filamentous fungi and bacteria, and few investigations have targeted the potential applications of enzymes secreted by yeasts. Addressing this issue, in this study, ß-glucosidases were produced by the Pichia ofunaensis and Trichosporon multisporum yeasts, via solid state fermentation with wheat bran as a substrate. When using p-Nitrophenyl ß-d-glucopyranoside (pNPG) as an enzyme substrate, maximum ß-glucosidase activities were detected at pH 5.5-6.0 and 50-60 °C for P. ofunaensis, and pH 5-6 and 55 °C for T. multisporum. Both enzymes were able to hydrolyze cellobiose and exhibited stability over a wide range of pH (3.5-9.0) for 24 h at 4 °C, thermostability up to 50 °C for 1 h and tolerance to 10 mM phenolic compounds. Negative modulation on enzyme activity was observed in the presence of Cu2+, Fe3+, Zn2+, Al3+ and Hg2+, while both ß-glucosidases were tolerant to 30% methanol, isopropanol and acetone. In the presence of ethanol and glucose, enzymes from P. ofunaensis were the more active and stable of the two. These enzymes, especially the P. ofunaensis ß-glucosidases, could be tested in enology for improving the aroma of wine and for integrating a cellulolytic complex to produce 2G ethanol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA