Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rev. bras. med. esporte ; 18(5): 338-340, set.-out. 2012. ilus
Artículo en Portugués | LILACS | ID: lil-658117

RESUMEN

INTRODUÇÃO: A fenilcetonúria (PKU) é caracterizada pela deficiência da enzima fenilalanina hidroxilase, causando acúmulo de fenilalanina. O diagnóstico precoce e a subordinação à dieta pobre em fenilalanina são importantes para prevenir os efeitos prejudiciais da hiperfenilalaninemia. Não aderir estritamente à dieta provoca, entre outros efeitos, um desequilíbrio entre os aminoácidos neutros que usam o mesmo transportador da fenilalanina na barreira hematoencefálica, causando, então, a diminuição da entrada de triptofano, o precursor de serotonina no cérebro. Esse neurotransmissor tem sido implicado na regulação dos estados de humor, sendo sua alta produção ligada à fadiga central em indivíduos submetidos a exercício prolongado. O exercício físico aumenta os níveis de triptofano livre no sangue, o que facilita seu influxo no cérebro, podendo, portanto, ser útil nos estados hiperfenilalaninêmicos. OBJETIVO: Avaliar se o exercício aeróbico é capaz de normalizar as concentrações de triptofano no cérebro de ratos com hiperfenilalaninemia. MÉTODOS: Trinta e dois ratos foram separados nos grupos sedentário (Sed) e exercício (Exe), e cada um deles subdividido em controle (SAL) e hiperfenilalaninemia (PKU). A hiperfenilalaninemia foi induzida pela administração de alfa-metilfenilalanina e fenilalanina durante três dias, enquanto os grupos SAL receberam salina. Os grupos Exe realizaram uma sessão de exercício aeróbico com duração de 60min e velocidade de 12m.min-1. RESULTADOS: A concentração de triptofano no cérebro nos grupos PKU foi significativamente menor que nos grupos SAL, tanto Sed como Exe, compatível com a condição hiperfenilalaninêmica. O exercício aumentou a concentração cerebral de triptofano comparada aos animais sedentários. O achado mais interessante foi que a concentração cerebral de triptofano no grupo ExePKU não foi diferente do SedSAL. CONCLUSÃO: Os resultados indicam um importante papel do exercício aeróbico para restaurar a concentração de triptofano no cérebro em ratos hiperfenilalaninêmicos.


INTRODUCTION: Phenylketonuria (PKU) is characterized by deficiency of the enzyme phenylalanine hydroxylase, leading to accumulation of phenylalanine. Early diagnosis and subordination to low-phenylalanine diet are important to prevent the harmful effects of hyperphenylalaninemia. In case the diet is not strictly followed, some possible effects are imbalance in the neutral amino acids that use the same carrier of phenylalanine to cross the blood-brain barrier, causing hence reduction in tryptophan entry, the precursor of serotonin in the brain. This neurotransmitter has been implicated in the regulation of mood states, and its high production is linked to central fatigue in individuals subjected to prolonged exercise. Physical exercise increases free tryptophan levels in the blood, which facilitates its influx in the brain, and therefore, may be useful in hyperphenylalaninemia states. OBJECTIVE: To assess whether aerobic exercise is able to normalize the concentrations of tryptophan in the brain of rats with hyperphenylalaninemia. METHODS: 32 rats were randomly assigned to sedentary (Sed) and exercise (Exe) groups, and then divided into control (HEA) and hyperphenylalaninemia (PKU). Hyperphenylalaninemia was induced by administration of alpha-metylphenylalanine and phenylalanine for three days, while the HEA groups received saline. Exe groups held a session of aerobic exercise lasting 60 minutes and speed of 12 m.min-1. RESULTS: The concentration of tryptophan in the brain of PKU groups was significantly lower than HEA groups (both in Sed and Exe groups), compatible with the condition of hyperphenylalaninemia. The exercise increased brain tryptophan levels comparing to sedentary animals. The most interesting finding was that the brain tryptophan levels of ExePKU group were not different from SedHEA group. CONCLUSION: The results indicate an important role of aerobic exercise to restore the concentration of tryptophan in the brain in hyperphenylalaninemic rats.

2.
J Neurol Sci ; 292(1-2): 89-95, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20226470

RESUMEN

Phenylketonuria (PKU) is a recessive autosomal disorder caused by a severe deficiency of phenylalanine-4-hydroxilase activity which leads to the accumulation of L-phenylalanine (Phe) in the tissues and plasma of patients. The main clinical features are retarded development and intellectual impairment. Recent studies have shown that oxidative stress may be involved in neuropathology of hyperphenylalaninemia. Lipoic acid (LA) is considered a potent antioxidant which is well absorbed from diet and can easily cross the blood-brain barrier. We investigated the neuroprotective effects of lipoic acid against oxidative stress caused by Phe in vivo and in vitro. Lipoic acid prevented the inhibition provoked by Phe on the activities of catalase, superoxide dismutase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase. It also prevented Phe alterations on total radical-trapping antioxidant potential, thiobarbituric acid-reactive substances, glutathione concentration and on production of reactive species. It is concluded that lipoic acid may be an efficient antioxidant in the CNS against oxidative stress induced by hyperphenylalaninemia. If the present results are confirmed in PKU patients, it is possible that supplementation of lipoic acid may contribute to the treatment of PKU as an adjuvant therapeutic approach to Phe-restricted dietary treatment and amino acid mixture.


Asunto(s)
Encéfalo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fenilcetonurias/metabolismo , Ácido Tióctico/farmacología , Análisis de Varianza , Animales , Antioxidantes/farmacología , Encéfalo/metabolismo , Catalasa/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Glutatión Peroxidasa/metabolismo , Fenilalanina , Fenilcetonurias/inducido químicamente , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo
3.
Metab Brain Dis ; 24(3): 415-25, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19688254

RESUMEN

Tyrosine levels are abnormally elevated in tissues and physiological fluids of patients with inborn errors of tyrosine catabolism especially in tyrosinemia type II which is caused by deficiency of tyrosine aminotransferase (TAT) and provokes eyes, skin and central nervous system disturbances. We have recently reported that tyrosine promoted oxidative stress in vitro but the exact mechanisms of brain damage in these disorder are poorly known. In the present study, we investigated the in vivo effect of L-tyrosine (500 mg/Kg) on oxidative stress indices in cerebral cortex homogenates of 14-day-old Wistar rats. A single injection of L-tyrosine decreased glutathione (GSH) and thiol-disulfide redox state (SH/SS ratio) while thiobarbituric acid-reactive substances, protein carbonyl content and glucose-6-phosphate dehydrogenase activity were enhanced. In contrast, the treatment did not affect ascorbic acid content, and the activities of superoxide dismutase, catalase and glutathione peroxidase. These results indicate that acute administration of L-tyrosine may impair antioxidant defenses and stimulate oxidative damage to lipids and proteins in cerebral cortex of young rats in vivo. This suggests that oxidative stress may represent a pathophysiological mechanism in hypetyrosinemic patients.


Asunto(s)
Corteza Cerebral/metabolismo , Glutatión/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Tirosina/farmacología , Animales , Ácido Ascórbico/metabolismo , Catalasa/metabolismo , Corteza Cerebral/efectos de los fármacos , Disulfuros/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Oxidación-Reducción , Carbonilación Proteica/efectos de los fármacos , Ratas , Ratas Wistar , Estimulación Química , Compuestos de Sulfhidrilo/metabolismo , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
4.
Metab Brain Dis ; 24(2): 271-82, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19296210

RESUMEN

gamma-Hydroxybutyric acid (GHB) is a naturally occurring compound in the central nervous system (CNS) whose tissue concentration are highly increased in the neurometabolic-inherited deficiency of succinic semialdehyde dehydrogenase (SSADH) activity or due to intoxication. SSADH deficiency is biochemically characterized by increased concentrations of GHB in tissues, cerebrospinal fluid, blood and urine of affected patients. Clinical manifestations are variable and include retardation of mental, motor, and language development along with other neurological symptoms, such as hypotonia, ataxia and seizures, whose underlying mechanisms are practically unknown. The precursor of GHB, 1,4-butanediol (1,4-BD) has been used to study the mechanisms of in vivo GHB neurotoxicity. Therefore, in the present work, the effect of acute administration of 20 or 120 mg/Kg 1,4-BD was investigated on various parameters of oxidative stress, such as spontaneous chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), total antioxidant reactivity (TAR), sulfhydryl and protein carbonyl contents, as well as the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in homogenates from cerebral cortex of 14-day-old Wistar rats. Acute administration of 120 mg/Kg 1,4-BD significantly increased spontaneous chemiluminescence and TBA-RS levels, while TAR measurement was markedly diminished, whereas injection of a lower dose (20 mg/Kg) did not change the parameters examined. Other parameters of oxidative stress evaluated were not affected by administration of 1,4-BD. These results indicate that 1,4-BD induces in vivo oxidative stress by stimulating lipid peroxidation and decreasing the non-enzymatic antioxidant defenses in cerebral cortex of young rats. If these effects also occur in humans, it is possible that they might contribute to the brain damage found in SSADH-deficient patients and possibly in individuals intoxicated by GHB or its prodrugs (gamma-butyrolactone or 1,4-BD).


Asunto(s)
Butileno Glicoles/metabolismo , Corteza Cerebral/metabolismo , Hidroxibutiratos/toxicidad , Neurotoxinas/toxicidad , Estrés Oxidativo/fisiología , Animales , Antioxidantes/metabolismo , Butileno Glicoles/farmacología , Catalasa/metabolismo , Corteza Cerebral/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Luminiscencia , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Profármacos/metabolismo , Profármacos/farmacología , Ratas , Ratas Wistar , Estadísticas no Paramétricas , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
5.
Metab Brain Dis ; 24(2): 283-98, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19294497

RESUMEN

N-acetylaspartic acid (NAA) is the biochemical hallmark of Canavan Disease, an inherited metabolic disease caused by deficiency of aspartoacylase activity. NAA is an immediate precursor for the enzyme-mediated biosynthesis of N-acetylaspartylglutamic acid (NAAG), whose concentration is also increased in urine and cerebrospinal fluid of patients affected by CD. This neurodegenerative disorder is clinically characterized by severe mental retardation, hypotonia and macrocephaly, and generalized tonic and clonic type seizures. Considering that the mechanisms of brain damage in this disease remain not fully understood, in the present study we investigated whether intracerebroventricular administration of NAA or NAAG elicits oxidative stress in cerebral cortex of 30-day-old rats. NAA significantly reduced total radical-trapping antioxidant potential, catalase and glucose 6-phosphate dehydrogenase activities, whereas protein carbonyl content and superoxide dismutase activity were significantly enhanced. Lipid peroxidation indices and glutathione peroxidase activity were not affected by NAA. In contrast, NAAG did not alter any of the oxidative stress parameters tested. Our results indicate that intracerebroventricular administration of NAA impairs antioxidant defenses and induces oxidative damage to proteins, which could be involved in the neurotoxicity of NAA accumulation in CD patients.


Asunto(s)
Ácido Aspártico/análogos & derivados , Enfermedad de Canavan/metabolismo , Corteza Cerebral/metabolismo , Neurotoxinas/toxicidad , Estrés Oxidativo/fisiología , Animales , Antioxidantes/metabolismo , Ácido Aspártico/administración & dosificación , Ácido Aspártico/metabolismo , Ácido Aspártico/toxicidad , Daño Encefálico Crónico/etiología , Daño Encefálico Crónico/metabolismo , Enfermedad de Canavan/complicaciones , Catalasa/efectos de los fármacos , Catalasa/metabolismo , Corteza Cerebral/efectos de los fármacos , Dipéptidos/administración & dosificación , Dipéptidos/metabolismo , Dipéptidos/toxicidad , Modelos Animales de Enfermedad , Glucosafosfato Deshidrogenasa/efectos de los fármacos , Glucosafosfato Deshidrogenasa/metabolismo , Glutatión Peroxidasa/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Inyecciones Intraventriculares , Peroxidación de Lípido , Masculino , Neuropéptidos/administración & dosificación , Neuropéptidos/metabolismo , Neuropéptidos/toxicidad , Neurotoxinas/administración & dosificación , Neurotoxinas/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA