Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bio Protoc ; 14(8): e4972, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38686347

RESUMEN

The advent of single-cell RNA sequencing (scRNAseq) has enabled in-depth gene expression analysis of several thousand cells isolated from tissues. We recently reported the application of scRNAseq toward the dissection of the tumor-infiltrating T-cell repertoire in human pancreatic cancer samples. In this study, we demonstrated that combined whole transcriptome and T-cell receptor (TCR) sequencing provides an effective way to identify tumor-reactive TCR clonotypes on the basis of gene expression signatures. An important aspect in this respect was the experimental validation of TCR-mediated anti-tumor reactivity by means of an in vitro functional assay, which is the subject of the present protocol. This assay involves the transient transfection of mRNA gene constructs encoding TCRα/ß pairs into a well-defined human T-cell line, followed by co-cultivation with the tumor cells of interest and detection of T-cell activation by flow cytometry. Due to the high transfectability and the low background reactivity of the mock-transfected T-cell line to a wide variety of tumor cells, this assay offers a highly robust and versatile platform for the functional screening of large numbers of TCR clonotypes as identified in scRNAseq data sets. Whereas the assay was initially developed to test TCRs of human origin, it was more recently also applied successfully for the screening of TCRs of murine origin. Key features • Efficient functional screening of-and discrimination between-TCRs isolated from tumor-reactive vs. bystander T-cell clones. • Applicable to TCRs from CD8+ and CD4+ tumor-infiltrating T-cells originating from patient-derived tumor samples and syngeneic mouse tumor models. • Rapid flow cytometric detection of T-cell activation by means of TNFα and CD107a expression after a 5 h T-cell/tumor cell co-cultivation.

2.
Front Immunol ; 14: 1286688, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077312

RESUMEN

Here, we describe the identification of two T-cell receptors (TRs) containing TRDV genes in their TRA chains, the first one in human and the second one in mouse. First, using 5'RACE on a mixed lymphocyte-tumor cell culture (MLTC), we identified TRDV1 5'-untranslated region (UTR) and complete coding sequence rearranged productively to TRAJ24. Single-cell TR RNA sequencing (RNA-seq) of the MLTC, conducted to identify additional clonotypes, revealed that the analysis software detected the hybrid TRDV-TRAJ TRA (TRA) chain but excluded it from the final results. In a separate project, we performed TR sequencing of tumor-infiltrating lymphocytes (TILs) in a murine tumor model. Here, the predominant clonotype contained a TRA chain with a TRDV2-2-TRAJ49 rearrangement. Again, the hybrid TRA chain was not reported in the final results. Transfection of both TR cDNAs resulted in cell surface localization of TR together with CD3, suggesting a productive protein in both cases. Tumor recognition of the Homo sapiens (Homsap) TRDV1-containing TR could be demonstrated by IFN Gamma ELISA ELISpot kit, whereas the Mus musculus (Musmus) TR did not recognize a tumor-derived cell line. To determine whether the TRDV-containing TRA chains we detected were rare events or whether TRDV genes are commonly incorporated into TRA chains, we queried the NCBI Sequence Read Archive for TR single-cell RNA-seq data and analyzed 21 human and 23 murine datasets. We found that especially Homsap TRDV1, Musmus TRDV1, and to some extent Musmus TRDV2-2 are more commonly incorporated into TRA chains than several TRAV genes, making those TRDV genes a relevant contribution to TRA diversity. TRDV-containing TRA chains are currently excluded from the final results of V-(D)-J dataset analyses with the CellRanger software. We provide a work-around to avoid exclusion of those hybrid TRA chains from the final analysis results.


Asunto(s)
Genes Codificadores de la Cadena delta de los Receptores de Linfocito T , Receptores de Antígenos de Linfocitos T , Humanos , Animales , Ratones , Receptores de Antígenos de Linfocitos T/genética , ADN Complementario
3.
Sci Transl Med ; 15(722): eadh9562, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967201

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is generally refractory to immune checkpoint blockade, although patients with genetically unstable tumors can show modest therapeutic benefit. We previously demonstrated the presence of tumor-reactive CD8+ T cells in PDAC samples. Here, we charted the tumor-infiltrating T cell repertoire in PDAC by combining single-cell transcriptomics with functional testing of T cell receptors (TCRs) for reactivity against autologous tumor cells. On the basis of a comprehensive dataset including 93 tumor-reactive and 65 bystander TCR clonotypes, we delineated a gene signature that effectively distinguishes between these T cell subsets in PDAC, as well as in other tumor indications. This revealed a high frequency of tumor-reactive TCR clonotypes in three genetically unstable samples. In contrast, the T cell repertoire in six genetically stable PDAC tumors was largely dominated by bystander T cells. Nevertheless, multiple tumor-reactive TCRs were successfully identified in each of these samples, thereby providing a perspective for personalized immunotherapy in this treatment-resistant indication.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linfocitos T CD8-positivos , Transcriptoma/genética , Receptores de Antígenos de Linfocitos T/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA