Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36674792

RESUMEN

Alzheimer's disease (AD) is known to be caused by amyloid ß-peptide (Aß) misfolded into ß-sheets, but this knowledge has not yet led to treatments to prevent AD. To identify novel molecular players in Aß toxicity, we carried out a genome-wide screen in Saccharomyces cerevisiae, using a library of 5154 gene knock-out strains expressing Aß1-42. We identified 81 mammalian orthologue genes that enhance Aß1-42 toxicity, while 157 were protective. Next, we performed interactome and text-mining studies to increase the number of genes and to identify the main cellular functions affected by Aß oligomers (oAß). We found that the most affected cellular functions were calcium regulation, protein translation and mitochondrial activity. We focused on SURF4, a protein that regulates the store-operated calcium channel (SOCE). An in vitro analysis using human neuroblastoma cells showed that SURF4 silencing induced higher intracellular calcium levels, while its overexpression decreased calcium entry. Furthermore, SURF4 silencing produced a significant reduction in cell death when cells were challenged with oAß1-42, whereas SURF4 overexpression induced Aß1-42 cytotoxicity. In summary, we identified new enhancer and protective activities for Aß toxicity and showed that SURF4 contributes to oAß1-42 neurotoxicity by decreasing SOCE activity.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Animales , Humanos , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/química , Calcio/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Muerte Celular , Canales de Calcio/genética , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/toxicidad , Fragmentos de Péptidos/metabolismo , Mamíferos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
2.
Curr Opin Struct Biol ; 72: 209-218, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34954608

RESUMEN

Proteins interact through their interfaces to fulfill essential functions in the cell. They bind to their partners in a highly specific manner and form complexes that have a profound effect on understanding the biological pathways they are involved in. Any abnormal interactions may cause diseases. Therefore, the identification of small molecules which modulate protein interactions through their interfaces has high therapeutic potential. However, discovering such molecules is challenging. Most protein-protein binding affinity is attributed to a small set of amino acids found in protein interfaces known as hot spots. Recent studies demonstrate that drug-like small molecules specifically may bind to hot spots. Therefore, hot spot prediction is crucial. As experimental data accumulates, artificial intelligence begins to be used for computational hot spot prediction. First, we review machine learning and deep learning for computational hot spot prediction and then explain the significance of hot spots toward drug design.


Asunto(s)
Inteligencia Artificial , Proteínas , Aminoácidos/química , Bases de Datos de Proteínas , Aprendizaje Automático , Unión Proteica , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA